Article

A Small-Molecule Probe of the Histone Methyltransferase G9a Induces Cellular Senescence in Pancreatic Adenocarcinoma

Chemical Biology Program, Broad Institute, Cambridge, Massachusetts 02142, United States.
ACS Chemical Biology (Impact Factor: 5.44). 04/2012; 7(7):1152-7. DOI: 10.1021/cb300139y
Source: PubMed

ABSTRACT Post-translational modifications of histones alter chromatin structure and play key roles in gene expression and specification of cell states. Small molecules that target chromatin-modifying enzymes selectively are useful as probes and have promise as therapeutics, although very few are currently available. G9a (also named euchromatin histone methyltransferase 2 (EHMT2)) catalyzes methylation of lysine 9 on histone H3 (H3K9), a modification linked to aberrant silencing of tumor-suppressor genes, among others. Here, we report the discovery of a novel histone methyltransferase inhibitor, BRD4770. This compound reduced cellular levels of di- and trimethylated H3K9 without inducing apoptosis, induced senescence, and inhibited both anchorage-dependent and -independent proliferation in the pancreatic cancer cell line PANC-1. ATM-pathway activation, caused by either genetic or small-molecule inhibition of G9a, may mediate BRD4770-induced cell senescence. BRD4770 may be a useful tool to study G9a and its role in senescence and cancer cell biology.

1 Bookmark
 · 
153 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Within the vast landscape of histone modification lysine methylation has gained increasing attention because of its profound regulatory potential. The methylation of lysine residues on histone proteins modulates chromatin structure and thereby contributes to the regulation of DNA-based nuclear processes such as transcription, replication and repair. Protein families with opposing catalytic activities, lysine methyltransferases (KMTs) and demethylases (KDMs), dynamically control levels of histone lysine methylation and individual enzymes within these families have become candidate oncology targets in recent years. A number of high quality small molecule inhibitors of these enzymes have been identified. Several of these compounds elicit selective cancer cell killing in vitro and robust efficacy in vivo, suggesting that targeting ‘histone lysine methylation pathways’ may be a relevant, emerging cancer therapeutic strategy. Here, we discuss individual histone lysine methylation pathway targets, the properties of currently available small molecule inhibitors and their application in the context of cancer.
    Pharmacology [?] Therapeutics 01/2015; DOI:10.1016/j.pharmthera.2015.01.002 · 7.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SETD8/SET8/Pr-SET7/KMT5A is the sole protein lysine methyltransferase (PKMT) known to mono-methylate lysine 20 of histone H4 in vivo. SETD8's methyltransferase activity has been implicated in many essential cellular processes including DNA replication, DNA damage response, transcription modulation, and cell cycle regulation. Developing SETD8 inhibitors with cellular activity is a key step toward elucidating the diverse roles of SETD8 via convenient pharmacological perturbation. From the hits of a prior high throughput screen (HTS), SPS8I1~3 (NSC663284, BVT948, and ryuvidine) were validated as potent SETD8 inhibitors. These compounds contain different structural motifs and inhibit SETD8 via distinct modes. More importantly, these compounds show cellular activity by suppressing the H4K20me1 mark of SETD8 and recapitulate characteristic S/G2/M-phase cell cycle defects as observed for RNAi-mediated SETD8 knockdown. The commonality of SPS8I1~3 against SETD8, together with their distinct structures and mechanisms for SETD8 inhibition, argues for the collective application of these compounds as SETD8 inhibitors.
    ACS Chemical Biology 08/2014; DOI:10.1021/cb500515r · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mounting evidence suggests that protein methyltransferases (PMTs), which catalyze methylation of histone and non-histone proteins, play a crucial role in diverse biological processes and human diseases. In particular, PMTs have been recognized as major players in regulating gene expression and chromatin state. PMTs are divided into two categories: protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). There has been a steadily growing interest in these enzymes as potential therapeutic targets and therefore, discovery of PMT inhibitors has also been pursued increasingly over the last decade. Here we present a perspective on selective, small-molecule inhibitors of PMTs with an emphasis on their discovery, characterization, and applicability as chemical tools for deciphering the target PMTs' physiological functions and involvement in human diseases. We highlight the current state of PMT inhibitors and discuss future directions and opportunities for PMT inhibitor discovery.
    Journal of Medicinal Chemistry 11/2014; DOI:10.1021/jm501234a · 5.48 Impact Factor

Full-text (2 Sources)

Download
55 Downloads
Available from
May 27, 2014

Joshiawa Paulk