A Small-Molecule Probe of the Histone Methyltransferase G9a Induces Cellular Senescence in Pancreatic Adenocarcinoma

Chemical Biology Program, Broad Institute, Cambridge, Massachusetts 02142, United States.
ACS Chemical Biology (Impact Factor: 5.36). 04/2012; 7(7):1152-7. DOI: 10.1021/cb300139y
Source: PubMed

ABSTRACT Post-translational modifications of histones alter chromatin structure and play key roles in gene expression and specification of cell states. Small molecules that target chromatin-modifying enzymes selectively are useful as probes and have promise as therapeutics, although very few are currently available. G9a (also named euchromatin histone methyltransferase 2 (EHMT2)) catalyzes methylation of lysine 9 on histone H3 (H3K9), a modification linked to aberrant silencing of tumor-suppressor genes, among others. Here, we report the discovery of a novel histone methyltransferase inhibitor, BRD4770. This compound reduced cellular levels of di- and trimethylated H3K9 without inducing apoptosis, induced senescence, and inhibited both anchorage-dependent and -independent proliferation in the pancreatic cancer cell line PANC-1. ATM-pathway activation, caused by either genetic or small-molecule inhibition of G9a, may mediate BRD4770-induced cell senescence. BRD4770 may be a useful tool to study G9a and its role in senescence and cancer cell biology.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Within the vast landscape of histone modification lysine methylation has gained increasing attention because of its profound regulatory potential. The methylation of lysine residues on histone proteins modulates chromatin structure and thereby contributes to the regulation of DNA-based nuclear processes such as transcription, replication and repair. Protein families with opposing catalytic activities, lysine methyltransferases (KMTs) and demethylases (KDMs), dynamically control levels of histone lysine methylation and individual enzymes within these families have become candidate oncology targets in recent years. A number of high quality small molecule inhibitors of these enzymes have been identified. Several of these compounds elicit selective cancer cell killing in vitro and robust efficacy in vivo, suggesting that targeting ‘histone lysine methylation pathways’ may be a relevant, emerging cancer therapeutic strategy. Here, we discuss individual histone lysine methylation pathway targets, the properties of currently available small molecule inhibitors and their application in the context of cancer.
    Pharmacology [?] Therapeutics 01/2015; 150. DOI:10.1016/j.pharmthera.2015.01.002 · 7.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mounting evidence suggests that protein methyltransferases (PMTs), which catalyze methylation of histone and non-histone proteins, play a crucial role in diverse biological processes and human diseases. In particular, PMTs have been recognized as major players in regulating gene expression and chromatin state. PMTs are divided into two categories: protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). There has been a steadily growing interest in these enzymes as potential therapeutic targets and therefore, discovery of PMT inhibitors has also been pursued increasingly over the last decade. Here we present a perspective on selective, small-molecule inhibitors of PMTs with an emphasis on their discovery, characterization, and applicability as chemical tools for deciphering the target PMTs' physiological functions and involvement in human diseases. We highlight the current state of PMT inhibitors and discuss future directions and opportunities for PMT inhibitor discovery.
    Journal of Medicinal Chemistry 11/2014; 58(4). DOI:10.1021/jm501234a · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The SMYD3 histone methyl transferase (HMTase) and the nuclear chaperone, HSP90, have been independently implicated as proto-oncogenes in several human malignancies. We show that a degenerate tetratricopeptide repeat (TPR)-like domain encoded in the SMYD3 C-terminal domain (CTD) mediates physical interaction with HSP90. We further demonstrate that the CTD of SMYD3 is essential for its basal HMTase activity and that the TPR-like structure is required for HSP90-enhanced enzyme activity. Loss of SMYD3-HSP90 interaction leads to SMYD3 mislocalization within the nucleus, thereby losing its chromatin association. This results in reduction of SMYD3-mediated cell proliferation and, potentially, impairment of SMYD3's oncogenic activity. These results suggest a novel approach for blocking HSP90-driven malignancy in SMYD3-overexpressing cells with a reduced toxicity profile over current HSP90 inhibitors.
    Oncotarget 02/2015; · 6.63 Impact Factor