Supplementation with Cyanidin-3-O-beta-Glucoside Protects against Hypercholesterolemia-Mediated Endothelial Dysfunction and Attenuates Atherosclerosis in Apolipoprotein E-Deficient Mice

Department of Nutrition, Sun Yat-sen University, Guangzhou, Guangdong Province, People's Republic of China
Journal of Nutrition (Impact Factor: 4.23). 04/2012; 142(6):1033-7. DOI: 10.3945/jn.112.157701
Source: PubMed

ABSTRACT In this study, we investigated the protective effects of the anthocyanin cyanidin-3-O-β-glucoside (C3G) on hypercholesterolemia-induced endothelial dysfunction in apoE-deficient (apoE(-/-)) mice. In the prevention study, twenty 8-wk-old male apoE(-/-) mice (n = 10/group) were fed a high-fat, cholesterol-rich diet (HCD) or the HCD supplemented with C3G (2 g/kg diet) for 8 wk. The endothelium-dependent relaxation response to acetylcholine in the aortas of the C3G-fed mice was greater compared with those fed the HCD (P < 0.05). The atherosclerotic plaque area in the aortic sinus of mice fed the C3G diet was lowered by 54% compared with those fed the HCD (P < 0.01). Mice fed C3G had greater expression of the ATP-binding cassette transporter G1 (ABCG1) and lower cholesterol, mainly 7-ketocholesterol (7-KC), concentrations than those fed the HCD. Superoxide production and lipid hydroperoxides in aorta were lower in mice fed C3G compared with those fed the HCD. The phosphorylation levels at Ser1177 of endothelial NO synthase (eNOS) and the production of cyclic GMP (cGMP) in aorta were greater in C3G-fed mice than in HCD-fed mice. In the therapy study, apoE(-/-) mice were fed the HCD for 8 wk and then continued to receive the HCD or were switched to the HCD supplemented with C3G (2 g/kg diet) for another 8 wk. The established endothelial dysfunction and atherosclerosis were reversed, accompanied by greater ABCG1 expression in aorta, lower cholesterol and 7-KC concentrations, and greater generation of cGMP in mice fed C3G compared with those fed the HCD. Taken together, our results show that the anthocyanin C3G prevents or reverses hypercholesterolemia-induced endothelial dysfunction by inhibiting cholesterol and 7-oxysterol accumulation in the aorta and the subsequent decrease in superoxide production, thereby preserving eNOS activity and NO bioavailability.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Vascular endothelial cell (EC) dysfunction strongly induces development of cardiovascular and cerebrovascular diseases. Epidemiologic studies demonstrated a preventative effect of dietary polyphenols towards cardiovascular disease. In studies using cultured vascular ECs, polyphenols were recognized to regulate nitric oxide (NO) and endothelin-1 (ET-1) production. Furthermore, epigallocatechin-3-gallate (EGCG) inhibited the expression of adhesion molecules by a signaling pathway that is similar to that of high-density lipoprotein (HDL) and involves induction of Ca2+/calmodulin-dependent kinase II (CaMKKII), liver kinase B (LKD1) and phosphatidylinositol 3-kinase (PI3K) expression. The effects of polyphenols on ECs include antioxidant activity and enhancement of the expression of several protective proteins, including endothelial NOS (eNOS) and paraoxonase 1 (PON1). However, the observed effects of dietary polyphenols in vitro do not always translate to an in vivo setting. As such, there are many questions concerning their physiological mode of action. In this review, we discuss research on the effect of dietary polyphenols on cardiovascular disease and their protective effect on EC dysfunction.
    Nutrition 04/2014; DOI:10.1016/j.nut.2014.04.011 · 3.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Scope: Oxidized LDL (oxLDL) induced vascular endothelial cell injury is a key event in the pathogenesis of atherosclerosis (AS). In our previous studies, we showed that delphinidin-3-glucoside (Dp), a natural anthocyanin, attenuated oxLDL-induced injury in human umbilical vein endothelial cells (HUVECs), indicating its potential role in preventing AS. However, the involved mechanism is not fully understood. Methods and results: Via methyl thiazolyl tetrazolium and flow cytometry assay, we found that Dp-attenuated oxLDL-induced cell viability decrease and apoptosis in HUVECs. Depending on confocal microscopy, transmission electron microscopy, and Western blot assay, we found that Dp-induced autophagy in HUVECs, whereas suppression of autophagy significantly abolished the protective role of Dp against oxLDL-induced endothelial cell injury. Furthermore, Dp upregulated sirtuin 1 (SIRT1) expression and SIRT1 knockdown notably suppressed Dp-induced autophagy in HUVECs. Dp also increased the expression of phosphorylated adenosine monophosphate-activated protein kinase, while adenosine monophosphate-activated protein kinase (AMPK) knockdown remarkably abolished Dp-induced SIRT1 expression and subsequent autophagy. Conclusion: Our data suggested that Dp protected HUVECs against oxLDL-induced injury by inducing autophagy via the adenosine monophosphate-activated protein kinase/SIRT1 signaling pathway. This new finding might shed light to the prevention and therapy of AS.
    Molecular Nutrition & Food Research 07/2014; 58(10). DOI:10.1002/mnfr.201400161 · 4.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Anthocyanins (AC) are water-soluble natural pigments found in various parts of higher plants. Despite their limited oral bioavailability and very low post-absorption plasma concentrations, the dietary consumption of these pigments has been proposed to be associated with a significant protection against several human pathological conditions, including cardiovascular diseases. Many studies highlighted that some health benefits of AC localize in particular at endothelium level, contributing to vascular homeostasis and also to the control of angiogenesis, inflammation, and platelet aggregation. This review reports and comments on the large existing literature addressing the molecular mechanisms that, beyond the antioxidant properties, may have a significant role in the effects of AC and AC-rich foods on vessel endothelium. Among these, AC have been reported to prevent peroxynitrite-mediated endothelial dysfunction in endothelial cells (ECs), thanks to their capability to modulate the expression and activity of several enzymes involved in NO metabolism. Furthermore, evidence indicates that AC can prevent the expression of adhesion molecules and the adhesion of monocytes to ECs challenged by pro-inflammatory agents. Overall, the activity of AC could be associated with the ability to elicit cell adaptive responses involving the transcription factor Nrf2 by affecting the "nucleophilic tone" of the organism. This review confirms the importance of specific nutritional molecules for human health and suggests new avenues for nutrition-based interventions to reduce the risk of cardiovascular disease in the population.
    Genes & Nutrition 07/2014; 9(4):404. DOI:10.1007/s12263-014-0404-8 · 3.42 Impact Factor