Article

BZS1, a B-box protein, promotes photomorphogenesis downstream of both brassinosteroid and light signaling pathways.

Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
Molecular Plant (Impact Factor: 6.13). 04/2012; 5(3):591-600. DOI: 10.1093/mp/sss041
Source: PubMed

ABSTRACT Photomorphogenesis is controlled by multiple signaling pathways, including the light and brassinosteroid (BR) pathways. BR signaling activates the BZR1 transcription factor, which is required for suppressing photomorphogenesis in the dark. We identified a suppressor of the BR hypersensitive mutant bzr1-1D and named it bzr1-1D suppressor1-Dominant (bzs1-D). The bzs1-D mutation was caused by overexpression of a B-box zinc finger protein BZS1, which is transcriptionally repressed by BZR1. Overexpression of BZS1 causes de-etiolation in the dark, short hypocotyls in the light, reduced sensitivity to BR treatment, and repression of many BR-activated genes. Knockdown of BZS1 by co-suppression partly suppressed the short hypocotyl phenotypes of BR-deficient or insensitive mutants. These results support that BZS1 is a negative regulator of BR response. BZS1 overexpressors are hypersensitive to different wavelengths of light and loss of function of BZS1 reduces plant sensitivity to light and partly suppresses the constitutive photomorphogenesis 1 (cop1) mutant in the dark, suggesting a positive role in light response. BZS1 protein accumulates at an increased level after light treatment of dark-grown BZS1-OX plants and in the cop1 mutants, and BZS1 interacts with COP1 in vitro, suggesting that light regulates BZS1 through COP1-mediated ubiquitination and proteasomal degradation. These results demonstrate that BZS1 mediates the crosstalk between BR and light pathways.

1 Bookmark
 · 
191 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The B-box (BBX) proteins are a class of zinc-finger transcription factors containing a B-box domain with one or two B-box motifs, and sometimes also feature a CCT (CONSTANS, CO-like, and TOC1) domain. BBX proteins are key factors in regulatory networks controlling growth and developmental processes that include seedling photomorphogenesis, photoperiodic regulation of flowering, shade avoidance, and responses to biotic and abiotic stresses. In this review we discuss the functions of BBX proteins and the role of B-box motif in mediating transcriptional regulation and protein–protein interaction in plant signaling. In addition, we provide novel insights into the molecular mechanisms of their action and the evolutionary significance of their functional divergence.
    Trends in Plant Science 02/2014; · 11.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We explored the interaction between radiation of different wavelength and jasmonic acid or brassinosteroids (BR) on leaf senescence-induced oxidative stress. Three approaches were used: 1) jasmonic acid insensitive1-1 (jai1-1) and brassinosteroid-deficient [dumpy (dpy)] mutants were treated with red (R) or far-red (FR) radiation; 2) phytochromedeficient aurea (au) and high pigment-1 (hp-1) (radiation exaggerated response) mutants were treated with methyl jasmonate (MeJA) or epibrassinolide (epiBL); and 3) double mutants au jai1-1 and au dpy were produced. Leaf chlorophyll content, lipid peroxidation, and antioxidant enzyme activities were determined. After senescence induction in detached leaves, we verified that the patterns of chlorophyll degradation of hormonal and photomorphogenic mutants were not significantly different in comparison with original cv. Micro-Tom (MT). Moreover, there was no significant change in lipid peroxidation measured as malondialdehyde (MDA) production, as well as catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) activities in the hormonal mutants. Exogenous BR increased CAT and APX activities in MT, au, and hp-1. As concerns the double mutants, severe reduction in H2O2 production which was not accompanied by changes in MDA content, and CAT and APX activities was observed during senescence in au dpy. The results suggest that JA and BR do not participate in light signaling pathway during leaf senescence-induced oxidative stress.
    Biologia Plantarum 12/2013; · 1.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Depending on the environment a young seedling encounters, the developmental program following seed germination could be skotomorphogenesis in the dark or photomorphogenesis in the light. Light signals are interpreted by a repertoire of photoreceptors followed by sophisticated gene expression networks, eventually resulting in developmental changes. The expression and functions of photoreceptors and key signaling molecules are highly coordinated and regulated at multiple levels of the central dogma in molecular biology. Light activates gene expression through the actions of positive transcriptional regulators and the relaxation of chromatin by histone acetylation. Small regulatory RNAs help attenuate the expression of light-responsive genes. Alternative splicing, protein phosphorylation/dephosphorylation, the formation of diverse transcriptional complexes, and selective protein degradation all contribute to proteome diversity and change the functions of individual proteins.
    Annual Review of Plant Biology 04/2014; 65:311-333. · 18.71 Impact Factor