Generation of retinal pigment epithelial cells from small molecules and OCT4-reprogrammed human induced pluripotent stem cells.

Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
pISSN (Impact Factor: 3.6). 02/2012; 1(2):96-109. DOI: 10.5966/sctm.2011-0057
Source: PubMed

ABSTRACT Autologous retinal pigment epithelium (RPE) grafts derived from induced pluripotent stem cells (iPSCs) may be used to cure blinding diseases in which RPE dysfunction results in photoreceptor degeneration. Four, two, and one factor-derived iPS (4F-, 2F-, and 1F-iPSCs, respectively) were differentiated into fully functional cuboidal shaped pigmented cells in polarized monolayers that express RPE-specific markers. 1F-iPS-RPE strongly resemble primary human fetal RPE (hfRPE) based on proteomic and untargeted metabolomic analyses, and, utilizing novel in vivo imaging technology coupled with electroretinography, we demonstrate that 1F-iPS-RPE mediate anatomical and functional rescue of photoreceptors after transplantation in an animal model of RPE-mediated retinal degeneration. 1F-iPS-RPE cells were injected subretinally as a suspension and formed a monolayer dispersed between host RPE cells. Furthermore, 1F-iPS-RPE do not simply provide trophic support to rescue photoreceptors as previously speculated, but actually phagocytose photoreceptor outer segments in vivo and restore visual cycling (based on high-resolution mass spectrometry based detection of recycled photoreceptor protein and lipid end products and electron microscopic analysis). Thus, 1F-iPS-RPE grafts may be superior to conventional iPS-RPE for clinical use since 1F-iPS-RPE closely resemble hfRPE, mediate anatomical and functional photoreceptor rescue in vivo and are generated using a reduced number of potentially oncogenic reprogramming factors.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Age-related macular degeneration (AMD) is the leading cause of legal blindness in older people in the developed world. The disease involves damage to the part of the retina responsible for central vision. Degeneration of retinal pigment epithelial (RPE) cells, photoreceptors, and choriocapillaris may contribute to visual loss. Over the past decades, scientists and clinicians have tried to replace lost RPE cells in patients with AMD using cells from different sources. In recent years, advances in generating RPE cells from stem cells have been made and clinical trials are currently evaluating the safety and efficiency of replacing the degenerated RPE cell layer with stem cell– derived RPE cells. However, the therapeutic success of transplantation of stem cell– derived RPE cells may be limited unless the transplanted cells can adhere and survive in the long term in the diseased eye. One hallmark of AMD is the altered extracellular environment of Bruch's membrane to which the grafted cells have to adhere. Here, we discuss recent approaches to overcome the inhibitory environment of the diseased eye and to enhance the survival rate of transplanted RPE cells. Our aim is to highlight novel approaches that may have the potential to improve the efficacy of RPE transplantation for AMD in the future.
    07/2014; 3(4). DOI:10.1167/tvst.3.4.4
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Age-related macular degeneration (AMD) is a major leading cause of visual impairment and blindness with no cure currently established. Cell replacement of RPE is discussed as a potential therapy for AMD. Previous studies were performed in animal models with severe limitations in recapitulating the disease progression. We describe in detail the effect of systemic injection of sodium iodate in the mouse retina. We further evaluate the usefulness of this animal model to analyze cell-specific effects following transplantation of human embryonic stem cell (hESC)-derived RPE cells. Methods: Morphological, functional and behavioral changes following sodium iodate injection were monitored by histology, gene expression analysis, electroretinography and optokinetic head tracking. hESC-derived RPE cells were transplanted one week after sodium iodate injection and experimental retinae were analyzed three weeks later. Results: Injection of sodium iodate caused complete RPE cell loss, photoreceptor degeneration and altered gene and protein expression in outer and inner nuclear layers. Retinal function was severely affected by day 3 and abolished from day 14. Following transplantation, donor hESC-derived RPE cells formed extensive monolayers that displayed wild type RPE cell morphology, organization and function, including phagocytosis of host photoreceptor outer segments. Conclusions: Systemic injection of sodium iodate has considerable effects on RPE, photoreceptors and inner nuclear layer neurons, and provides a model to assay reconstitution and maturation of RPE cell transplants. The availability of an RPE-free Bruch's membrane in this model likely allows the unprecedented formation of extensive polarized cell monolayers from donor hESC-derived RPE cell suspensions.
    Investigative Ophthalmology &amp Visual Science 08/2014; 55(8). DOI:10.1167/iovs.14-14325 · 3.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the developed world, age-related macular degeneration (AMD) is one of the major causes of irreversible blindness in the elderly. Although management of neovascular AMD (wet AMD) has dramatically progressed, there is still no effective treatment for nonneovascular AMD (dry AMD), which is characterized by retinal pigment epithelial (RPE) cell death (or dysfunction) and microenvironmental disruption in the retina. Therefore, RPE replacement and microenvironmental regulation represent viable treatments for dry AMD. Recent advances in cell biology have demonstrated that RPE cells can be easily generated from several cell types (pluripotent stem cells, multipotent stem cells, or even somatic cells) by spontaneous differentiation, coculturing, defined factors or cell reprogramming, respectively. Additionally, in vivo studies also showed that the restoration of visual function could be obtained by transplanting functional RPE cells into the subretinal space of recipient. More importantly, clinical trials approved by the US government have shown promising prospects in RPE transplantation. However, key issues such as implantation techniques, immune rejection, and xeno-free techniques are still needed to be further investigated. This review will summarize recent advances in cell transplantation for dry AMD. The obstacles and prospects in this field will also be discussed.
    Clinical Interventions in Aging 01/2015; 10:255. DOI:10.2147/CIA.S73705 · 1.82 Impact Factor