Article

Arenavirus Nucleoprotein Targets Interferon Regulatory Factor-Activating Kinase IKK

Institute of Microbiology University Hospital Center and University of Lausanne, Lausanne, Switzerland.
Journal of Virology (Impact Factor: 4.65). 04/2012; 86(15):7728-38. DOI: 10.1128/JVI.00187-12
Source: PubMed

ABSTRACT Arenaviruses perturb innate antiviral defense by blocking induction of type I interferon (IFN) production. Accordingly, the arenavirus nucleoprotein (NP) was shown to block activation and nuclear translocation of interferon regulatory factor 3 (IRF3) in response to virus infection. Here, we sought to identify cellular factors involved in innate antiviral signaling targeted by arenavirus NP. Consistent with previous studies, infection with the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) prevented phosphorylation of IRF3 in response to infection with Sendai virus, a strong inducer of the retinoic acid-inducible gene I (RIG-I)/mitochondrial antiviral signaling (MAVS) pathway of innate antiviral signaling. Using a combination of coimmunoprecipitation and confocal microscopy, we found that LCMV NP associates with the IκB kinase (IKK)-related kinase IKKε but that, rather unexpectedly, LCMV NP did not bind to the closely related TANK-binding kinase 1 (TBK-1). The NP-IKKε interaction was highly conserved among arenaviruses from different clades. In LCMV-infected cells, IKKε colocalized with NP but not with MAVS located on the outer membrane of mitochondria. LCMV NP bound the kinase domain (KD) of IKKε (IKBKE) and blocked its autocatalytic activity and its ability to phosphorylate IRF3, without undergoing phosphorylation. Together, our data identify IKKε as a novel target of arenavirus NP. Engagement of NP seems to sequester IKKε in an inactive complex. Considering the important functions of IKKε in innate antiviral immunity and other cellular processes, the NP-IKKε interaction likely plays a crucial role in arenavirus-host interaction.

Download full-text

Full-text

Available from: Luis Martinez-Sobrido, Aug 12, 2014
0 Followers
 · 
193 Views
 · 
21 Downloads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arenaviruses include several causative agents of hemorrhagic fever (HF) disease in humans that are associated with high morbidity and significant mortality. Morbidity and lethality associated with HF arenaviruses are believed to involve the dysregulation of the host innate immune and inflammatory responses that leads to impaired development of protective and efficient immunity. The molecular mechanisms underlying this dysregulation are not completely understood, but it is suggested that viral infection leads to disruption of early host defenses and contributes to arenavirus pathogenesis in humans. We demonstrate in the accompanying paper that the prototype member in the family, lymphocytic choriomeningitis virus (LCMV), disables the host innate defense by interfering with type I interferon (IFN-I) production through inhibition of the interferon regulatory factor 3 (IRF3) activation pathway and that the viral nucleoprotein (NP) alone is responsible for this inhibitory effect (C. Pythoud, W. W. Rodrigo, G. Pasqual, S. Rothenberger, L. Martínez-Sobrido, J. C. de la Torre, and S. Kunz, J. Virol. 86:7728-7738, 2012). In this report, we show that LCMV-NP, as well as NPs encoded by representative members of both Old World (OW) and New World (NW) arenaviruses, also inhibits the nuclear translocation and transcriptional activity of the nuclear factor kappa B (NF-κB). Similar to the situation previously reported for IRF3, Tacaribe virus NP (TCRV-NP) does not inhibit NF-κB nuclear translocation and transcriptional activity to levels comparable to those seen with other members in the family. Altogether, our findings demonstrate that arenavirus infection inhibits NF-κB-dependent innate immune and inflammatory responses, possibly playing a key role in the pathogenesis and virulence of arenavirus.
    Journal of Virology 05/2012; 86(15):8185-97. DOI:10.1128/JVI.07240-11 · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Among the members of the Arenaviridae family, Lassa virus and Junin virus generate periodic annual outbreaks of severe human hemorrhagic fever (HF) in endemic areas of West Africa and Argentina, respectively. Given the human health threat that arenaviruses represent and the lack of a specific and safe chemotherapy, the search for effective antiviral compounds is a continuous demanding effort. Since diverse host cell pathways and enzymes are used by RNA viruses to fulfill their replicative cycle, the targeting of a host process has turned an attractive antiviral approach in the last years for many unrelated virus types. This strategy has the additional benefit to reduce the serious challenge for therapy of RNA viruses to escape from drug effects through selection of resistant variants triggered by their high mutation rate. This article focuses on novel strategies to identify inhibitors for arenavirus therapy, analyzing the potential for antiviral developments of diverse host factors essential for virus infection.
    Viruses 09/2012; 4(9):1569-91. DOI:10.3390/v4091569 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The type I interferon (IFN) system mediates a wide variety of antiviral effects and represents an important first barrier to virus infection. Consequently, viruses have developed an impressive diversity of tactics to circumvent IFN responses. Evasion strategies can involve preventing initial viral detection, via the disruption of the toll-like receptors or the retinoic acid inducible gene I (RIG-I)-like receptors, or by avoiding the initial production of the ligands recognized by these receptors. An alternative approach is to preclude IFN production by disarming or degrading the transcription factors involved in the expression of IFN, such as IRF3/IRF7, NFκB, or ATF-2/c-jun, or by inducing a general block on host cell transcription. Viruses also oppose IFN signaling, both by disturbing the type I IFN receptor and by impeding JAK/STAT signal transduction upon IFN receptor engagement. In addition, the global expression of IFN-stimulated genes (ISGs) can be obstructed via interference with epigenetic signaling, and specific ISGs can also be selectively targeted for inhibition. Finally, some viruses disrupt IFN responses by co-opting negative regulatory systems, while still others use antiviral mechanisms to their own advantage. Here, we review recent developments in this field. © 2012 The Authors. Immunology © 2012 Blackwell Publishing Ltd.
    Immunology 11/2012; 138(3). DOI:10.1111/imm.12038 · 3.74 Impact Factor
Show more