Overexpression of Snai3 suppresses lymphoid- and enhances myeloid-cell differentiation.

Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
European Journal of Immunology (Impact Factor: 4.52). 04/2012; 42(4):1038-43. DOI: 10.1002/eji.201142193
Source: PubMed

ABSTRACT The altered expression of transcription factors in hematopoietic stem cells and their subsequent lineages can alter the development of lymphoid and myeloid lineages. The role of the transcriptional repressor Snai3 protein in the derivation of cells of the hemato-poietic system was investigated. Snai3 is expressed in terminal T-cell and myeloid lineages, therefore, we chose to determine if expressing Snai3 in the early stages of hematopoietic development would influence cell-lineage determination. Expression of Snai3 by retroviral transduction of hematopoietic stem cells using bone marrow chimera studies demonstrated a block in lymphoid-cell development and enhanced expansion of myeloid-lineage cells. Analysis of Snai3-expressing hematopoietic precursor cells showed normal numbers of immature cells, but a block in the development of cells committed to lymphoid lineages. These data indicate that the overexpression of Snai3 does alter bone marrow cell development and that the identification of genes whose expression is altered by the presence of Snai3 would aid in our understanding of these developmental pathways.

Download full-text


Available from: Timothy John Dahlem, Mar 17, 2014
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Epithelial-mesenchymal transition (EMT) is crucial for tumor progression and metastasis. Snail family members, including Snail, Slug and Smuc, are the transcription factors that repress E-cadherin expression and induce epithelial-mesenchymal transition in some tumor tissues. In this study, the expression of snail family proteins in cervical squamous cancers was evaluated. Methods: A series of 144 samples, comprising 28 cases of normal cervical tissues and 116 cases of squamous cell carcinoma (SCC), were used for analysis. The expression of Snail, Slug, Smuc, E-cadherin and vimentin was assessed in the tissues by immunohistochemistry and was statistically analyzed by SPSS13.0. Results: The increase in nuclear expression of snail and smuc was associated with down-regulation of E-cadherin and up-regulation of vimentin. The nuclear expression of Snail and Smuc was positively associated with lymph node metastasis of the SCC, and the nuclear expression of Snail was also positively related with histological differentiation. In contrast, tumor size, histological differentiation, lymph node metastasis and stages of the SCC were not associated with the expression of Slug, cytpolasmic Smuc or cytoplasm levels of Snail. Conclusion: Snail and Smuc proteins, but not Slug, may contribute to the onset of EMT in SCC. Inhibiting the expression of Snail and Smuc might be a potential therapeutic target for the treatment of metastasis and invasion of cervical carcinomas.
    Clinical and investigative medicine. Medecine clinique et experimentale 01/2013; 36(4):E223. · 1.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Snail gene family encodes zinc finger-containing transcriptional repressor proteins. Three members of the Snail gene family have been described in mammals, encoded by the Snai1, Snai2, and Snai3 genes. The function of the Snai1 and Snai2 genes have been studied extensively during both vertebrate embryogenesis and tumor progression and metastasis, and play critically important roles during these processes. However, little is known about the function of the Snai3 gene and protein. We describe here generation and analysis of Snai3 conditional and null mutant mice. We also generated an EYFP-tagged Snai3 null allele that accurately reflects endogenous Snai3 gene expression, with the highest levels of expression detected in thymus and skeletal muscle. Snai3 null mutant homozygous mice are viable and fertile, and exhibit no obvious phenotypic defects. These results demonstrate that Snai3 gene function is not essential for embryogenesis in mice.
    PLoS ONE 06/2013; 8(6):e65344. DOI:10.1371/journal.pone.0065344 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Snail family of transcriptional regulators consists of three highly conserved members. These proteins regulate (repress) transcription via the recruitment of histone deacetylases to target gene promoters that possess the appropriate E-box binding sequences. Murine Snai1 is required for mouse development while Snai2 deficient animals survive with some anomalies. Less is known about the third member of the family, Snai3. To investigate the function of Snai3, we generated a conditional knockin mouse. Utilizing Cre-mediated deletion to facilitate the ablation of Snai3 in T cells or the entire animal, we found little to no effect of the loss of Snai3 in the entire animal or in T cell lineages. This finding provided the hypothesis that absence of Snai3 was mitigated, in part, by the presence of Snai2. To test this hypothesis we created Snai2/Snai3 double deficient mice. The developmental consequences of lacking both of these proteins was manifested in stunted growth, a paucity of offspring including a dramatic deficiency of female mice, and impaired immune cell development within the lymphoid lineages.
    PLoS ONE 07/2013; 8(7):e69216. DOI:10.1371/journal.pone.0069216 · 3.53 Impact Factor
Show more