Profound neonatal hypoglycemia and lactic acidosis caused by pyridoxine-dependent epilepsy.

Division of Biochemical Diseases, Department of Pediatrics, University of British Columbia, Vancouver, Canada.
PEDIATRICS (Impact Factor: 5.3). 04/2012; 129(5):e1368-72. DOI: 10.1542/peds.2011-0123
Source: PubMed

ABSTRACT Pyridoxine-dependent epilepsy (PDE) was first described in 1954. The ALDH7A1 gene mutations resulting in α-aminoadipic semialdehyde dehydrogenase deficiency as a cause of PDE was identified only in 2005. Neonatal epileptic encephalopathy is the presenting feature in >50% of patients with classic PDE. We report the case of a 13-month-old girl with profound neonatal hypoglycemia (0.6 mmol/L; reference range >2.4), lactic acidosis (11 mmol/L; reference range <2), and bilateral symmetrical temporal lobe hemorrhages and thalamic changes on cranial MRI. She developed multifocal and myoclonic seizures refractory to multiple antiepileptic drugs that responded to pyridoxine. The diagnosis of α-aminoadipic semialdehyde dehydrogenase deficiency was confirmed based on the elevated urinary α-aminoadipic semialdehyde excretion, compound heterozygosity for a known splice mutation c.834G>A (p.Val278Val), and a novel putative pathogenic missense mutation c.1192G>C (p.Gly398Arg) in the ALDH7A1 gene. She has been seizure-free since 1.5 months of age on treatment with pyridoxine alone. She has motor delay and central hypotonia but normal language and social development at the age of 13 months. This case is the first description of a patient with PDE due to mutations in the ALDH7A1 gene who presented with profound neonatal hypoglycemia and lactic acidosis masquerading as a neonatal-onset gluconeogenesis defect. PDE should be included in the differential diagnosis of hypoglycemia and lactic acidosis in addition to medically refractory neonatal seizures.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Pyridoxine-dependent seizures is a rare cause of recurrent seizures in neonatal period and resistant to most of the antiepileptic medications, but respond to administration of pyridoxine. We report a male infant who had neonatal seizures which were initially responsive to anticonvulsants and later became unresponsive and presented at 45 days of life with seizures. These seizures were not responding to any anticonvulsant but responded to pyridoxine. After discharge parents inadvertently stopped pyridoxine and the infant presented with seizures once again. These seizures were promptly controlled with readministration of pyridoxine confirming the diagnosis of pyridoxine-dependant seizures.
    Journal of clinical neonatology. 01/2013; 2(1):39-41.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neonatal hypoglycemia is one of the most common biochemical abnormalities encountered in the newborn. However, controversy remains surrounding its definition and management especially in asymptomatic patients. New information has been published that describes the incidence and timing of low glucose concentrations in the groups most at risk for asymptomatic neonatal hypoglycemia. Furthermore, one large prospective study failed to find an association between repetitive low glucose concentrations and poor neurodevelopmental outcomes in preterm infants. But hypoglycemia due to hyperinsulinism, especially genetic causes, continued to be associated with brain injury. New advances were made in the diagnosis and management of hyperinsulinism, including acquired hyperinsulinism in small for gestational age infants and others. Continuous glucose monitoring remains an attractive strategy for future research in this area. The fundamental question of how best to manage asymptomatic newborns with low glucose concentrations remains unanswered. Balancing the risks of overtreating newborns with low glucose concentrations who are undergoing a normal transition following birth against the risks of undertreating those in whom low glucose concentrations are pathological, dangerous, and/or a harbinger of serious metabolic disease remains a challenge.
    Current opinion in endocrinology, diabetes, and obesity 11/2013; · 3.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metabolic disorders of the brain that manifest in the neonatal or early infantile period are usually associated with acute and severe illness and are thus referred to as devastating metabolic disorders. Most of these disorders may be classified as organic acid disorders, amino acid metabolism disorders, primary lactic acidosis, or fatty acid oxidation disorders. Each disorder has distinctive clinical, biochemical, and radiologic features. Early diagnosis is important both for prompt treatment to prevent death or serious sequelae and for genetic counseling. However, diagnosis is often challenging because many findings overlap and may mimic those of more common neonatal conditions, such as hypoxic-ischemic encephalopathy and infection. Ultrasonography (US) may be an initial screening method for the neonatal brain, and magnetic resonance (MR) imaging is the modality of choice for evaluating metabolic brain disorders. Although nonspecific imaging findings are common in early-onset metabolic disorders, characteristic patterns of brain involvement have been described for several disorders. In addition, diffusion-weighted images may be used to characterize edema during an acute episode of encephalopathy, and MR spectroscopy depicts changes in metabolites that may help diagnose metabolic disorders and assess response to treatment. Imaging findings, including those of advanced MR imaging techniques, must be closely reviewed. If one of these rare disorders is suspected, the appropriate biochemical test or analysis of the specific gene should be performed to confirm the diagnosis. ©RSNA, 2014.
    Radiographics 09/2014; 34(5):1257-1272. · 2.73 Impact Factor