Artemis C-terminal region facilitates V(D)J recombination through its interactions with DNA Ligase IV and DNA-PKcs

Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.
Journal of Experimental Medicine (Impact Factor: 12.52). 04/2012; 209(5):955-63. DOI: 10.1084/jem.20111437
Source: PubMed

ABSTRACT Artemis is an endonuclease that opens coding hairpin ends during V(D)J recombination and has critical roles in postirradiation cell survival. A direct role for the C-terminal region of Artemis in V(D)J recombination has not been defined, despite the presence of immunodeficiency and lymphoma development in patients with deletions in this region. Here, we report that the Artemis C-terminal region directly interacts with the DNA-binding domain of Ligase IV, a DNA Ligase which plays essential roles in DNA repair and V(D)J recombination. The Artemis-Ligase IV interaction is specific and occurs independently of the presence of DNA and DNA-protein kinase catalytic subunit (DNA-PKcs), another protein known to interact with the Artemis C-terminal region. Point mutations in Artemis that disrupt its interaction with Ligase IV or DNA-PKcs reduce V(D)J recombination, and Artemis mutations that affect interactions with Ligase IV and DNA-PKcs show additive detrimental effects on coding joint formation. Signal joint formation remains unaffected. Our data reveal that the C-terminal region of Artemis influences V(D)J recombination through its interaction with both Ligase IV and DNA-PKcs.

Download full-text


Available from: Aya Kurosawa, Sep 27, 2015
48 Reads
  • Source
    • "were previously described [20]. Truncation 620–800 was generated by PCR amplification followed by BamHI/NotI cloning in the FNT vector as described [23]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA Ligase IV, along with its interacting partner XRCC4, are essential for repairing DNA double strand breaks by non-homologous end joining (NHEJ). Together, they complete the final ligation step resolving the DNA break. Ligase IV is regulated by XRCC4 and XLF. However, the mechanism(s) by which Ligase IV control the NHEJ reaction and other NHEJ factor(s) remains poorly characterized. Here, we show that a C-terminal region of Ligase IV (aa 620–800), which encompasses a NLS, the BRCT I, and the XRCC4 interacting region (XIR), is essential for nuclear localization of its co-factor XRCC4. In Ligase IV deficient cells, XRCC4 showed deregulated localization remaining in the cytosol even after induction of DNA double strand breaks. DNA Ligase IV was also required for efficient localization of XLF into the nucleus. Additionally, human fibroblasts that harbor hypomorphic mutations within the Ligase IV gene displayed decreased levels of XRCC4 protein, implicating that DNA Ligase IV is also regulating XRCC4 stability. Our results provide evidence for a role of DNA Ligase IV in controlling the cellular localization and protein levels of XRCC4.
    DNA repair 09/2014; 21:36-42. DOI:10.1016/j.dnarep.2014.05.010 · 3.11 Impact Factor
  • Source
    • "C-NHEJ, namely Artemis and CtIP (Bothmer et al., 2013; Ma et al., 2002; Malu et al., 2012; Weterings et al., 2009). WRN, BLM, RECQL4 and RECQL1 are differentially up-regulated to guarantee genomic stability in proliferating B cells (Kawabe et al., 2000). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract DNA double-strand breaks are highly toxic DNA lesions that cause genomic instability, if not efficiently repaired. RecQ helicases are a family of highly conserved proteins that maintain genomic stability through their important roles in several DNA repair pathways, including DNA double-strand break repair. Double-strand breaks can be repaired by homologous recombination (HR) using sister chromatids as templates to facilitate precise DNA repair, or by an HR-independent mechanism known as non-homologous end-joining (NHEJ) (error-prone). NHEJ is a non-templated DNA repair process, in which DNA termini are directly ligated. Canonical NHEJ requires DNA-PKcs and Ku70/80, while alternative NHEJ pathways are DNA-PKcs and Ku70/80 independent. This review discusses the role of RecQ helicases in NHEJ, alternative (or back-up) NHEJ (B-NHEJ) and microhomology-mediated end-joining (MMEJ) in V(D)J recombination, class switch recombination and telomere maintenance.
    Critical Reviews in Biochemistry and Molecular Biology 07/2014; 49(6):1-10. DOI:10.3109/10409238.2014.942450 · 7.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Artemis is a recently identified factor involved in V(D)J recombination and nonhomologous end joining (NHEJ) of DNA double-strand break (DSB) repair. Here, we performed targeted disruption of the Artemis gene (ARTEMIS) in the human pre-B cell line Nalm-6. Unexpectedly, we found that cells lacking Artemis exhibit increased sensitivity to low doses, but not high doses, of ionizing radiation. We also show that ARTEMIS-deficient cells are hypersensitive to the topoisomerase II inhibitor etoposide, but to a much lesser extent than cells lacking DNA ligase IV, a critical component of NHEJ. Unlike DNA ligase IV-deficient cells, ARTEMIS-deficient cells were not hypersensitive to ICRF-193, a topoisomerase II inhibitor that does not stabilize topoisomerase II-DNA cleavable complexes. Collectively, our results suggest that Artemis only partially participates in the NHEJ pathway to repair DSBs in human somatic cells.
    DNA and Cell Biology 02/2008; 27(1):55-61. DOI:10.1089/dna.2007.0649 · 2.06 Impact Factor
Show more