Article

Novel β-structure of YLR301w from Saccharomyces cerevisiae.

Biomedical Research Institute, Korea Institute of Science and Technology, 39-1 Hawolkok-dong, Sungbuk-gu, Seoul 136-791, Republic of Korea.
Acta Crystallographica Section D Biological Crystallography (Impact Factor: 7.23). 05/2012; 68(Pt 5):531-40. DOI: 10.1107/S090744491200491X
Source: PubMed

ABSTRACT When the Z-type variant of human α(1)-antitrypsin was overexpressed in Saccharomyces cerevisiae, proteomics analysis identified YLR301w as one of the up-regulated proteins. YLR301w is a 27.5 kDa protein with no sequence homology to any known protein and has been reported to interact with Sec72 and Hrr25. The crystal structure of S. cerevisiae YLR301w has been determined at 2.3 Å resolution, revealing a novel β-structure. It consists of an N-terminal ten-stranded β-barrel with two short α-helices connected by a 23-residue linker to a seven-stranded half-barrel with two short helices at the C-terminus. The N-terminal barrel has a highly conserved hydrophobic channel that can bind hydrophobic molecules such as PEG. It forms a homodimer both in the crystal and in solution. YLR301w binds Sec72 with a K(d) of 6.2 µM, but the biological significance of this binding requires further investigation.

Download full-text

Full-text

Available from: Won-Kyu Lee, Aug 16, 2015
0 Followers
 · 
230 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pfam is a large collection of protein families and domains. Over the past 2 years the number of families in Pfam has doubled and now stands at 6190 (version 10.0). Methodology improvements for searching the Pfam collection locally as well as via the web are described. Other recent innovations include modelling of discontinuous domains allowing Pfam domain definitions to be closer to those found in structure databases. Pfam is available on the web in the UK (http://www.sanger.ac.uk/Software/Pfam/), the USA (http://pfam.wustl.edu/), France (http://pfam.jouy.inra.fr/) and Sweden (http://Pfam.cgb.ki.se/).
    Nucleic Acids Research 02/2004; 32(Database issue):D138-41. DOI:10.1093/nar/gkh121 · 9.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TOR kinases integrate environmental and nutritional signals to regulate cell growth in eukaryotic organisms. Here, we describe results from a study combining quantitative proteomics and comparative expression analysis in the budding yeast, S. cerevisiae, to gain insights into TOR function and regulation. We profiled protein abundance changes under conditions of TOR inhibition by rapamycin treatment, and compared this data to existing expression information for corresponding gene products measured under a variety of conditions in yeast. Among proteins showing abundance changes upon rapamycin treatment, almost 90% of them demonstrated homodirectional (i.e., in similar direction) transcriptomic changes under conditions of heat/oxidative stress. Because the known downstream responses regulated by Tor1/2 did not fully explain the extent of overlap between these two conditions, we tested for novel connections between the major regulators of heat/oxidative stress response and the TOR pathway. Specifically, we hypothesized that activation of regulator(s) of heat/oxidative stress responses phenocopied TOR inhibition and sought to identify these putative TOR inhibitor(s). Among the stress regulators tested, we found that cells (hsf1-R206S, F256S and ssa1-3 ssa2-2) constitutively activated for heat shock transcription factor 1, Hsf1, inhibited rapamycin resistance. Further analysis of the hsf1-R206S, F256S allele revealed that these cells also displayed multiple phenotypes consistent with reduced TOR signaling. Among the multiple Hsf1 targets elevated in hsf1-R206S, F256S cells, deletion of PIR3 and YRO2 suppressed the TOR-regulated phenotypes. In contrast to our observations in cells activated for Hsf1, constitutive activation of other regulators of heat/oxidative stress responses, such as Msn2/4 and Hyr1, did not inhibit TOR signaling. Thus, we propose that activated Hsf1 inhibits rapamycin resistance and TOR signaling via elevated expression of specific target genes in S. cerevisiae. Additionally, these results highlight the value of comparative expression analyses between large-scale proteomic and transcriptomic datasets to reveal new regulatory connections.
    PLoS ONE 02/2008; 3(2):e1598. DOI:10.1371/journal.pone.0001598 · 3.53 Impact Factor
  • Nucleic Acids Research 01/2000; 28(1-1):235-242. DOI:10.1093/nar/28.1.235 · 9.11 Impact Factor
Show more