Novel Β-structure of YLR301w from Saccharomyces cerevisiae

Biomedical Research Institute, Korea Institute of Science and Technology, 39-1 Hawolkok-dong, Sungbuk-gu, Seoul 136-791, Republic of Korea.
Acta Crystallographica Section D Biological Crystallography (Impact Factor: 2.67). 05/2012; 68(Pt 5):531-40. DOI: 10.1107/S090744491200491X
Source: PubMed


When the Z-type variant of human α(1)-antitrypsin was overexpressed in Saccharomyces cerevisiae, proteomics analysis identified YLR301w as one of the up-regulated proteins. YLR301w is a 27.5 kDa protein with no sequence homology to any known protein and has been reported to interact with Sec72 and Hrr25. The crystal structure of S. cerevisiae YLR301w has been determined at 2.3 Å resolution, revealing a novel β-structure. It consists of an N-terminal ten-stranded β-barrel with two short α-helices connected by a 23-residue linker to a seven-stranded half-barrel with two short helices at the C-terminus. The N-terminal barrel has a highly conserved hydrophobic channel that can bind hydrophobic molecules such as PEG. It forms a homodimer both in the crystal and in solution. YLR301w binds Sec72 with a K(d) of 6.2 µM, but the biological significance of this binding requires further investigation.

Download full-text


Available from: Won-Kyu Lee,
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Saccharomyces cerevisiae multicellular communities are sustained by a scaffolding extracellular matrix, which provides spatial organization, and nutrient and water availability, and ensures group survival. According to this tissue-like biology, the yeast extracellular matrix (yECM) is analogous to the higher eukaryotes counterpart for its polysaccharide and proteinaceous nature. Few works focused on yeast biofilms, identifying the flocculin Flo11 and several members of the HSP70 in the extracellular space. Molecular composition of the yECM, is therefore mostly unknown. The homologue of yeast Gup1 protein in high Eukaryotes (HHATL) acts as a regulator of Hedgehog signal secretion, therefore interfering in morphogenesis and cell-cell communication through the ECM, which mediates but is also regulated by this signalling pathway. In yeast, the deletion of GUP1 was associated with a vast number of diverse phenotypes including the cellular differentiation that accompanies biofilm formation. Results: The proteome of S. cerevisiae yECM from biofilm-like mats was purified and analysed by Nano LC-MS/MS, 2D Difference Gel Electrophoresis (DIGE), and MALDI-TOF/TOF. Two strains were compared, wild type and the mutant defective in GUP1. As controls for the identification of the yECM-only proteins, the proteome from liquid batch cultures was also identified. Proteins were grouped into distinct functional classes, mostly Metabolism, Protein Fate/Remodelling and Cell Rescue and Defence mechanisms, standing out the presence of heat shock chaperones, metalloproteinases, broad signalling cross-talkers and other putative signalling proteins. The data has been deposited to the ProteomeXchange with identifier PXD001133. Conclusions: yECM, as the mammalian counterpart, emerges as highly protenaceous. As in higher Eukaryotes ECM, numerous proteins that could allow dynamic remodelling, and signalling events to occur in/and via yECM were identified. Importantly, large sets of enzymes encompassing full antagonistic metabolic pathways, suggest that mats develop into two metabolically distinct populations, suggesting that either extensive moonlighting or actual metabolism occurs extracellularly. The gup1∆ showed abnormally loose ECM texture. Accordingly, the correspondent differences in proteome unveiled acetic and citric acid producing enzymes as putative players in structural integrity maintenance.
    BMC Microbiology 07/2015; 15(1). DOI:10.1186/s12866-015-0550-1 · 2.73 Impact Factor

We use cookies to give you the best possible experience on ResearchGate. Read our cookies policy to learn more.