Translating the therapeutic potential of neurotrophic factors to clinical 'proof of concept': A personal saga achieving a career-long quest

Ceregene, Inc., San Diego, CA 92121, USA.
Neurobiology of Disease (Impact Factor: 5.2). 04/2012; 48(2):153-78. DOI: 10.1016/j.nbd.2012.04.004
Source: PubMed

ABSTRACT While the therapeutic potential of neurotrophic factors has been well-recognized for over two decades, attempts to translate that potential to the clinic have been disappointing, largely due to significant delivery obstacles. Similarly, gene therapy (or gene transfer) emerged as a potentially powerful, new therapeutic approach nearly two decades ago and despite its promise, also suffered serious setbacks when applied to the human clinic. As advances continue to be made in both fields, ironically, they may now be poised to complement each other to produce a translational breakthrough. The accumulated data argue that gene transfer provides the 'enabling technology' that can solve the age-old delivery problems that have plagued the translation of neurotrophic factors as treatments for chronic central nervous system diseases. A leading translational program applying gene transfer to deliver a neurotrophic factor to rejuvenate and protect degenerating human neurons is CERE-120 (AAV2-NRTN). To date, over two dozen nonclinical studies and three clinical trials have been completed. A fourth (pivotal) clinical trial has completed all dosing and is currently evaluating safety and efficacy. In total, eighty Parkinson's disease (PD) subjects have thus far been dosed with CERE-120 (some 7 years ago), representing over 250 cumulative patient-years of exposure, with no serious safety issues identified. In a completed sham-surgery, double-blinded controlled trial, though the primary endpoint (the Unified Parkinson's Disease Rating Scale (UDPRS) motor off score measured at 12 months) did not show benefit from CERE-120, several important motor and quality of life measurements did, including the same UPDRS-motor-off score, pre-specified to also be measured at a longer, 18-month post-dosing time point. Importantly, not a single measurement favored the sham control group. This study therefore, provided important, well-controlled evidence establishing 'clinical proof of concept' for gene transfer to the CNS and the first controlled evidence for clinical benefit of a neurotrophic factor in a human neurodegenerative disease. This paper reviews the development of CERE-120, starting historically with the long-standing interest in the therapeutic potential of neurotrophic factors and continuing with selective accounts of past efforts to translate their potential to the clinic, eventually leading to the application of gene transfer and its role as the 'enabling technology'. Because of growing interest in translational R&D, including its practice in industry, the paper is uniquely oriented from the author's personal, quasi-autobiographic perspective and career-long experiences conducting translational research and development, with a focus on various translational neurotrophic factor programs spanning 30+ years in Big Pharma and development-stage biotech companies. It is hoped that by sharing these perspectives, practical insight and information might be provided to others also interested in translational R&D as well as neurotrophic factors and gene therapy, offering readers the opportunity to benefit from some of our successes, while possibly avoiding some of our missteps.


Available from: Raymond T Bartus, May 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although therapeutic potential of neurotrophic factors (NTFs) has been well recognized for over two decades, attempts to translate that potential to the clinic have been disappointing, largely due to significant obstacles in delivery, including inadequate protein dose/kinetics released at target sites. Considerable efforts have been made to improve the therapeutic performance of NTFs. This articles reviews recent developments in localized delivery systems of NTFs for the neurological disorders treatments with a main focus on sustained delivery strategies. Different non-covalent binding approaches have been employed to immobilize proteins in hydrogels, microspheres, electrospun nanofibers, and their combined systems, which serve as depots for sustained local release of NTFs. The challenges associated with current NTFs delivery systems and how these systems can be applied to neurological diseases and disorders have been discussed in the review. In conclusion, optimal delivery systems for NTFs will be needed for reliable and meaningful clinical benefits; ideally, delivering a time and dose-controlled release of bioactive multi-NTFs at different individual optimal kinetics to achieve multi-functions in target tissues is significant preferred.
    Asian Journal of Pharmaceutical Sciences 10/2013; 8(5):269–277. DOI:10.1016/j.ajps.2013.10.003
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intrastriatal injection of recombinant adeno-associated viral vector serotype 2/1 (rAAV2/1) to overexpress the neurotrophic factor pleiotrophin (PTN) provides neuroprotection for tyrosine hydroxylase immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc), increases THir neurite density in the striatum (ST) and reverses functional deficits in forepaw use following 6-hydroxydopamine (6-OHDA) toxic insult. Glial cell line-derived neurotrophic factor (GDNF) gene transfer studies suggest that optimal neuroprotection is dependent on the site of nigrostriatal overexpression. The present study was conducted to determine whether enhanced neuroprotection could be accomplished via simultaneous rAAV2/1 PTN injections into the ST and SN compared with ST injections alone. Rats were unilaterally injected in the ST alone or injected in both the ST and SN with rAAV2/1 expressing either PTN or control vector. Four weeks later, all rats received intrastriatal injections of 6-OHDA. Rats were euthanized 6 or 16 weeks relative to 6-OHDA injection. A novel selective total enumeration method to estimate nigral THir neuron survival was validated to maintain the accuracy of stereological assessment. Long-term nigrostriatal neuroprotection and functional benefits were only observed in rats in which rAAV2/1 PTN was injected into the ST alone. Results suggest that superior preservation of the nigrostriatal system is provided by PTN overexpression delivered to the ST and restricted to the ST and SN pars reticulata and is not improved with overexpression of PTN within SNpc neurons.Gene Therapy advance online publication, 8 May 2014; doi:10.1038/gt.2014.42.
    Gene therapy 05/2014; DOI:10.1038/gt.2014.42 · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Substantial interest persists for developing neurotrophic factors to treat neurodegenerative diseases. At the same time, significant progress has been made in implementing gene therapy as a means to provide long-term expression of bioactive neurotrophic factors to targeted sites in the brain. Nonetheless, to date, no double-blind clinical trial has achieved positive results on its primary endpoint despite robust benefits achieved in animal models. A major issue with advancing the field is the paucity of information regarding the expression and effects of neurotrophic factors in human neurodegenerative brain, relative to the well-characterized responses in animal models. To help fill this information void, we examined post-mortem brain tissue from four patients with nigrostriatal degeneration who had participated in clinical trials testing gene delivery of neurturin to the putamen of patients. Each had died of unrelated causes ranging from 1.5-to-3-months (2 Parkinson's disease patients), to 4+-years (1 Parkinson's disease and 1 multiple-system atrophy-parkinsonian type patient) following gene therapy.
    Neurobiology of Disease 04/2015; 78. DOI:10.1016/j.nbd.2015.03.023 · 5.20 Impact Factor