MicroRNAs and metastasis-related gene expression in Egyptian breast cancer patients.

Collage of Pharmacy, Pharmacology Department, King Saud University, Riyadh, Saudi Arabia.
Asian Pacific journal of cancer prevention: APJCP (Impact Factor: 1.5). 02/2012; 13(2):591-8. DOI: 10.7314/APJCP.2012.13.2.591
Source: PubMed

ABSTRACT MicroRNAs (miRNAs) are a class of naturally occurring small noncoding RNAs that regulate gene expression, cell growth, differentiation and apoptosis by targeting mRNAs for translational repression or cleavage. The present study was conducted to study miRNAs in Egyptian breast cancer (BC) and their relation to metastasis, tumor invasion and apoptosis in addition to their association with the ER and PR statuses.
Real Time RT-PCR was performed to identify the miRNA expression level of eight miRNAs and eight metastatic-related genes in 40 breast cancer samples and their adjacent non-neoplastic tissues. The expression levels of each miRNA relative to U6 RNA were determined. Also, miRNA expression profiles of the BC and their corresponding ANT were evaluated.
The BC patients showed an up-regulation in miRNAs (mir-155, mir-10, mir-21 and mir-373) with an upregulation in MMP2, MMp9 and VEGF genes. We found down regulation in mir-17p, mir-126, mir-335, mir-30b and also TIMP3, TMP1 and PDCD4 genes in the cancer tissue compared to the adjacent non-neoplastic tissues. Mir -10b, mir -21, mir-155 and mir373 and the metastatic genes MMP2, MMP9 and VEGF were significantly associated with an increase in tumor size (P<0.05). No significant difference was observed between any of the studied miRNAs regarding lymph node metastasis. Mir-21 was significantly over-expressed in ER-/PR- cases.
Specific miRNAs (mir-10, mir-21, mir-155, mir-373, mir-30b, mir-126, mir-17p, mir-335) are associated with tumor metastasis and other clinical characteristics for BC, facilitating identification of individuals who are at risk.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The genetic factors of cancer predisposition remain elusive in the majority of familial and/or early-onset cases of breast cancer (BC). This type of BC is promoted by germ-line mutations that inactivate BRCA1 or BRCA2. On the other hand, recent studies have indicated that alterations in the levels of miRNA expression are linked to this disease. Although BRCA1 and BRCA2 gene mutations have been reported to commonly lead to alterations in genes that encode cancer-related proteins, little is known regarding the putative impact of these mutations on noncoding miRNAs. In the present study, we aimed to determine whether miRNA dysregulation is involved in the pathogenesis of BRCA-mutated BC. An expression analysis of 14 human miRNAs previously shown to be related to BC diagnosis, prognosis, and drug resistance was conducted using tissues from 60 familial and/or early-onset patients whose peripheral blood samples had been screened for BRCA1 and BRCA2 mutations through sequence analysis. Let-7a and miR-335 expression levels were significantly downregulated in the tumors of patients with a BRCA mutation compared with those of patients without a BRCA mutation (P = 0.04 and P = 0.02, respectively). Our results defined the associations between the expression status of let-7a and miR-335 and BRCA mutations. The expression analysis of these miRNAs might be used as biomarkers of the BRCA mutation status of early-onset and/or familial BC.
    Molecular and Cellular Biochemistry 06/2014; · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Trauma to the spinal cord causes permanent disability to more than 180,000 people every year worldwide. The initial mechanical damage triggers a complex set of secondary events involving the neural, vascular, and immune systems that largely determine the functional outcome of the spinal cord injury (SCI). Cellular and biochemical mechanisms responsible for this secondary injury largely depend on activation and inactivation of specific gene programs. Recent studies indicate that microRNAs function as gene expression switches in key processes of the SCI. Microarray data from rodent contusion models reveal that SCI induces changes in the global microRNA expression patterns. Variations in microRNA abundance largely result from alterations in the expression of the cells at the damaged spinal cord. However, microRNA expression levels after SCI are also influenced by the infiltration of immune cells to the injury site and the death and migration of specific neural cells after injury. Evidences on the role of microRNAs in the SCI pathophysiology have come from different sources. Bioinformatic analysis of microarray data has been used to identify specific variations in microRNA expression underlying transcriptional changes in target genes, which are involved in key processes in the SCI. Direct evidences on the role of microRNAs in SCI are scarcer, although recent studies have identified several microRNAs (miR-21, miR-486, miR-20) involved in key mechanisms of the SCI such as cell death or astrogliosis, among others. From a clinical perspective, different evidences make clear that microRNAs can be potent therapeutic tools to manipulate cell state and molecular processes in order to enhance functional recovery. The present article reviews the actual knowledge on how injury affects microRNA expression and the meaning of these changes in the SCI pathophysiology, to finally explore the clinical potential of microRNAs in the SCI.
    Frontiers in Cellular Neuroscience 01/2014; 8:53. · 4.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective. Previous studies demonstrated that the associations between expression level of microRNA-155 (miR-155) and clinicopathological significance of breast cancer remained inconsistent. Therefore, we performed a meta-analysis based on eligible studies to summarize the possible associations. Methods. We identified eligible studies published up to May 2014 by a comprehensive search of PubMed, EMBASE, CNKI, and VIP databases. The analysis was performed with RevMan. 5.0 software. Results. A total of 15 studies were included. The results of meta-analysis showed that miR-155 was positively correlated with breast cancer with standardized mean difference (SMD) = 1.22. Elevated miR-155 was found in Her-2 positive or lymph node metastasis positive, or p53 mutant type breast cancer. But the result showed to be insignificant in TNM comparison. With respect to estrogen receptor alpha (ER) and progesterone receptor (PR) status, both of them showed significant associations with SMD = −1.2 and −1.85, respectively. Conclusion. MiR-155 detection might have a diagnostic value in breast cancer patients. It might be used as an auxiliary biomarker for different clinicopathological breast cancer.
    BioMed Research International 08/2014; 2014:724209. · 2.71 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014