Differential activation of the ER stress factor XBP1 by oligomeric assemblies.

Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA.
Neurochemical Research (Impact Factor: 2.55). 04/2012; 37(8):1707-17. DOI: 10.1007/s11064-012-0780-7
Source: PubMed

ABSTRACT Several neurodegenerative disorders are characterized by protein misfolding, a phenomenon that results in perturbation of cellular homeostasis. We recently identified the protective activity of the ER stress response factor XBP1 (X-box binding protein 1) against Amyloid-ß1-42 (Aß42) neurotoxicity in cellular and Drosophila models of Alzheimer's disease. Additionally, subtoxic concentrations of Aß42 soluble aggregates (oligomers) induced accumulation of spliced (active) XBP1 transcripts, supporting the involvement of the ER stress response in Aß42 neurotoxicity. Here, we tested the ability of three additional disease-related amyloidogenic proteins to induce ER stress by analyzing XBP1 activation at the RNA level. Treatment of human SY5Y neuroblastoma cells with homogeneous preparations of α-Synuclein (α-Syn), Prion protein (PrP106-126), and British dementia amyloid peptide (ABri1-34) confirmed the high toxicity of oligomers compared to monomers and fibers. Additionally, α-Syn oligomers, but not monomers or fibers, demonstrated potent induction of XBP1 splicing. On the other hand, PrP106-126 and ABri1-34 did not activate XBP1. These results illustrate the biological complexity of these structurally related assemblies and argue that oligomer toxicity depends on the activation of amyloid-specific cellular responses.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Impaired proteostasis is one of the main features of all amyloid diseases, which are associated with the formation of insoluble aggregates from amyloidogenic proteins. The aggregation process can be caused by overproduction or poor clearance of these proteins. However, numerous reports suggest that amyloid oligomers are the most toxic species, rather than insoluble fibrillar material, in Alzheimer's, Parkinson's, and Prion diseases, among others. Although the exact protein that aggregates varies between amyloid disorders, they all share common structural features that can be used as therapeutic targets. In this review, we focus on therapeutic approaches against shared features of toxic oligomeric structures and future directions.
    Biochemical pharmacology 01/2014; · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In Alzheimer's disease (AD), disturbed homeostasis of the proteases competing for amyloid precursor protein processing has been reported: a disintegrin and metalloproteinase 10 (ADAM10), the physiological α-secretase, is decreased in favor of the amyloid-β-generating enzyme BACE-1. To identify transcription factors that modulate the expression of either protease, we performed a screening approach: 48 transcription factors significantly interfered with ADAM10/BACE-1-promoter activity. One selective inducer of ADAM10 gene expression is the X-box binding protein-1 (XBP-1). This protein regulates the unfolded protein-response pathway. We demonstrate that particularly the spliced XBP-1 variant dose dependently regulates ADAM10 expression, which can be synergistically enhanced by 100 nM insulin. Analysis of 2 different transgenic mouse models (APP/PS1 and 5xFAD) revealed that at early time points in pathology XBP-1 metabolism is induced. This is accompanied by a 2-fold augmented ADAM10 amount as compared with nontransgenic littermates (P=0.011). Along with aging of the mice, the system is counterregulated, and XBP-1 together with ADAM10 expression level decreased to ∼50% as compared with control animals. Analyses of expression levels in human AD brains showed that ADAM10 mRNA correlated with active XBP-1 (r=0.3120), but expression did not reach levels of healthy age-matched controls, suggesting deregulation of XBP-1 signaling. Our results demonstrate that XBP-1 is a driver of ADAM10 gene expression and that disturbance of this pathway might contribute to development or progression of AD.-Reinhardt, S., Schuck, F., Grösgen, S., Riemenschneider, M., Hartmann, T., Postina, R., Grimm, M., Endres, K. Unfolded protein response signaling by transcription factor XBP-1 regulates ADAM10 and is affected in Alzheimer's disease.
    The FASEB Journal 10/2013; · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Alzheimer's disease (AD), the mechanisms of neuronal loss remain largely unknown. Although tau pathology is closely correlated with neuronal loss, how its accumulation may lead to activation of neurotoxic pathways is unclear. Here we show that tau increased the levels of ubiquitinated proteins in the brain and triggered activation of the unfolded protein response (UPR). This suggested that tau interferes with protein quality control in the endoplasmic reticulum (ER). Consistent with this, ubiquitin was found to associate with the ER in human AD brains and tau transgenic (rTg4510) mouse brains, but this was not always colocalized with tau. The increased levels of ubiquitinated protein were accompanied by increased levels of phosphorylated protein kinase R-like ER kinase (pPERK), a marker that indicates UPR activation. Depleting soluble tau levels in cells and brain could reverse UPR activation. Tau accumulation facilitated its deleterious interaction with ER membrane and associated proteins that are essential for ER-associated degradation (ERAD), including valosin-containing protein (VCP) and Hrd1. Based on this, the effects of tau accumulation on ERAD efficiency were evaluated using the CD3δ reporter, an ERAD substrate. Indeed, CD3δ accumulated in both in vitro and in vivo models of tau overexpression and AD brains. These data suggest that soluble tau impairs ERAD and the result is activation of the UPR. The reversibility of this process, however, suggests that tau-based therapeutics could significantly delay this type of cell death and therefore disease progression.
    Journal of Neuroscience 05/2013; 33(22):9498-9507. · 6.75 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014