Article

The roles of mast cells in anticancer immunity.

Department of Microbiology and Immunology, Dartmouth Medical School, 1 Medical Center Drive, Lebanon, NH 03756, USA.
Cancer Immunology and Immunotherapy (Impact Factor: 3.64). 04/2012; 61(9):1511-20. DOI: 10.1007/s00262-012-1246-0
Source: PubMed

ABSTRACT The tumor microenvironment (TME), which is composed of stromal cells such as endothelial cells, fibroblasts, and immune cells, provides a supportive niche promoting the growth and invasion of tumors. The TME also raises an immunosuppressive barrier to effective antitumor immune responses and is therefore emerging as a target for cancer immunotherapies. Mast cells (MCs) accumulate in the TME at early stages, and their presence in the TME is associated with poor prognosis in many aggressive human cancers. Some well-established roles of MCs in cancer are promoting angiogenesis and tumor invasion into surrounding tissues. Several mouse models of inducible and spontaneous cancer show that MCs are among the first immune cells to accumulate within and shape the TME. Although MCs and other suppressive myeloid cells are associated with poor prognosis in human cancers, high densities of intratumoral T effector (T(eff)) cells are associated with a favorable prognosis. The latter finding has stimulated interest in developing therapies to increase intratumoral T cell density. However, cellular and molecular mechanisms promoting high densities of intratumoral T(eff) cells within the TME are poorly understood. New evidence suggests that MCs are essential for shaping the immune-suppressive TME and impairing both antitumor T(eff) cell responses and intratumoral T cell accumulation. These roles for MCs warrant further elucidation in order to improve antitumor immunity. Here, we will summarize clinical studies of the prognostic significance of MCs within the TME in human cancers, as well as studies in mouse models of cancer that reveal how MCs are recruited to the TME and how MCs facilitate tumor growth. Also, we will summarize our recent studies indicating that MCs impair generation of protective antitumor T cell responses and accumulation of intratumoral T(eff) cells. We will also highlight some approaches to target MCs in the TME in order to unleash antitumor cytotoxicity.

0 Bookmarks
 · 
87 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic and frequent alcohol (ethanol [EtOH]) intake has been associated with an increased incidence of several types of cancers including breast, mouth, throat, esophageal, stomach, and colorectal (CRC). The underlying mechanism of this deleterious carcinogenic effect of alcohol has not been clearly established but inflammation may be 1 unifying feature of these cancers. We have recently shown that intestinal mast cells play a central role in intestinal carcinogenesis. In this study, we tested our hypothesis that mast cell-mediated inflammation is 1 underlying mechanism by which chronic alcohol promotes intestinal tumorigenesis. APC(Δ468) mice were fed either an alcohol-containing Nanji liquid diet or isocaloric dextrose-containing Nanji diet for 10 weeks and then sacrificed to collect small and large intestine samples. Assessments of tumor number and size as well as mast cell number and mast cell activity and histology score for invasion were compared between Control (dextrose-fed) and alcohol-fed APC(∆468) mice. The effect of alcohol on mast cell-mediated tumor migration was also assessed using an in vitro migration assay. Alcohol feeding increased both polyp number and size within both the small and the large intestines of APC(∆468) mice. Only alcohol-fed mice showed evidence of tumor invasion. Chronic alcohol feeding also resulted in an increased mast cell number and activity in tumor stroma and invading borders. In vitro migration assay showed that alcohol significantly increases mast cell-mediated tumor migration in vitro. Our data show that chronic alcohol intake promotes: (i) intestinal tumorigenesis and tumor invasion in genetically susceptible mice; (ii) increases in polyp-associated mast cells; and (iii) mast cell-mediated tumor migration in vitro. Both our in vivo and in vitro studies suggest that mast cell-mediated inflammation could be 1 mechanism by which alcohol promotes carcinogenesis.
    Alcoholism Clinical and Experimental Research 01/2013; 37 Suppl 1:E199-208. · 3.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Passive immunotherapy with monoclonal antibodies is an indispensable cornerstone of clinical oncology. Notably, all FDA-approved antibodies comprise the IgG class, although numerous research articles proposed monoclonal antibodies of the IgM, IgG, IgA and IgE classes directed specifically against tumor-associated antigens. In particular, for the IgE isotype class, several recent studies could demonstrate high tumoricidic efficacy. Therefore, this review specifically highlights the latest developments toward IgE-based immunotherapy of cancer. Possible mechanisms and safety aspects of IgE-mediated tumor cell death are discussed with special focus on the attracted immune cells. An outlook is given on how especially comparative oncology could contribute to further developments. Humans and dogs have a highly comparable IgE biology, suggesting that translational AllergoOncology studies in patients with canine cancer could have predictive value for the potential of IgE-based anticancer immunotherapy in human clinical oncology.
    Allergy 10/2013; · 5.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Elucidation of the events responsible for the interaction between lymphatic endothelial cells (LECs) and mast cells (MCs) may prove to be a valuable source for controlling lymphangiogenesis. In the present study, we compared immunohistochemical and RT-PCR findings of the popliteal lymph node (PLN) and footpad skin in C57BL/6J and WBB6F1 mice, the MC-deficient strain. The results indicated that MCs play certain role in complete Freund's adjuvant-induced intranodal lymphangiogenesis. VEGF-A, VEGFR-2 and TNF-α were crucial factors in lymphangiogenesis both in the PLN and skin. Moreover, the in vivo administration of the specific mTOR inhibitor, rapamycin inhibited lymphangiogenesis independent of MCs in PLN rather than in the skin. Further study on anti-lymphangiogenic effect will contribute to our understanding of LEC and MC modulation in pathological lymphangiogenesis.
    Molecular Biology Reports 01/2014; · 2.51 Impact Factor