Article

Modeling of simultaneous growth and storage kinetics variation under unsteady feast conditions for aerobic heterotrophic biomass.

Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey.
Bioprocess and Biosystems Engineering (Impact Factor: 1.87). 04/2012; 35(8):1445-54. DOI: 10.1007/s00449-012-0733-1
Source: PubMed

ABSTRACT The heterotrophic biomass has the capacity of utilizing substrate predominantly for growth or storage processes under steady-state conditions. In this study, the short-term variations in growth and storage kinetics of activated sludge under disturbed feeding conditions were analyzed using a multi-component biodegradation model. The variations in growth and storage kinetics were investigated with the aid of multi-response modeling and identifiability analysis. It was found that the heterotrophic biomass is able to increase its direct growth activity together with reducing the substrate storage capability under the availability of external substrate. Reducing the sludge age (SRT) from 10 to 2 days increased the maximum specific growth rate, μ (OHO,Max) from 3.9 to 7.0 day(-1), but did not considerably affected the maximum storage rate, k (Stor,OHO). The alteration of sludge age also elevated the half-saturation constant for growth (K (S,OHO)) from 5 to 25 mg COD/L. The increase in primary growth metabolism together with reduced storage rate was validated by model for two different sludge ages in the availability of external substrate. Aside from having a lower storage capability, the biomass had fast adaptation ability to direct growth process at low SRTs. The alteration of feed conditions was found to have different impacts on storage and growth kinetics. These results are significant and advance the field of activated sludge modeling under dynamic conditions by incorporation of short-term effects. Appropriate modifications including short-term effects in model structure may also reduce dynamic model recalibration efforts in the future.

0 Bookmarks
 · 
89 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The study evaluated the chronic impact of sulfamethoxazole on metabolic activities of fast growing microbial culture. It focused on changes induced on utilization kinetics of acetate and composition of the microbial community. The experiments involved a fill and draw reactor, fed with acetate and continuous sulfamethoxazole dosing of 50mg/L. The evaluation relied on model evaluation of the oxygen uptake rate profiles, with parallel assessment of microbial community structure by 454-pyrosequencing. Continuous sulfamethoxazole dosing inflicted a retardation effect on acetate utilization in a way commonly interpreted as competitive inhibition, blocked substrate storage and accelerated endogenous respiration. A fraction of acetate was utilized at a much lower rate with partial biodegradation of sulfamethoxazole. Results of pyrosequencing with a replacement mechanism within a richer more diversified microbial culture, through inactivation of vulnerable fractions in favor of species resistant to antibiotic, which made them capable of surviving and competing even with a slower metabolic response.
    Bioresource Technology 05/2014; 166C:219-228. · 5.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study evaluated the kinetics of nonylphenol ethoxylate (NPEO) and acetate biodegradation at a moderate sludge age by acclimated culture under aerobic conditions. A laboratory-scale sequencing batch reactor was set and fed only with acetate mixture. The system was operated at steady state with a sludge age of 8 days. Following this stage, a mixture of NPEO and acetate was fed to the mixed culture in order to assess the biodegradation kinetics of NPEO and its impact on acetate utilization. A mechanistic model was developed involving model components and kinetic parameters for both substrates. The model was calibrated with parameters such as oxygen uptake rate and polyhydroxyalkanoates. Biodegradation characteristics and kinetics of acetate and NPEO were estimated by using the model results. Evaluation of calibrated model indicated that exposure of NPEO to non-acclimated sludge caused significant inhibitory impact on the utilization and storage of acetate. However, acclimation ofbiomass greatly suppressed inhibitory effects of NPEO on growth process involved in the degradation of acetate.
    Environmental Technology 01/2014; 35(5-8):741-8. · 1.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study investigated the effect of variations in the acetate to biomass ratio on substrate storage potential, and the kinetics of substrate utilization. A series of batch experiments were conducted with biomass taken from the fill and draw reactor operated at a sludge age of 2d. One of the batch reactors duplicated the substrate loading in the main reactor. The others were started with different initial acetate to biomass ratios both in lower and higher ranges. Increasing available acetate did not totally divert excess substrate to storage; the microbial culture adjusted the kinetics of the metabolic reactions to a higher growth rate so that more substrate could be utilized for direct growth at high acetate levels. Conversely, storage rate was increased, utilizing a higher substrate fraction for polyhydroxybutyrate generation when acetate concentration was lowered. The physiological and molecular bases of storage at low substrate levels were discussed.
    Bioresource Technology 08/2014; 171C:314-322. · 5.04 Impact Factor