Article

Genomic landscape of human allele-specific DNA methylation.

Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 04/2012; 109(19):7332-7. DOI: 10.1073/pnas.1201310109
Source: PubMed

ABSTRACT DNA methylation mediates imprinted gene expression by passing an epigenomic state across generations and differentially marking specific regulatory regions on maternal and paternal alleles. Imprinting has been tied to the evolution of the placenta in mammals and defects of imprinting have been associated with human diseases. Although recent advances in genome sequencing have revolutionized the study of DNA methylation, existing methylome data remain largely untapped in the study of imprinting. We present a statistical model to describe allele-specific methylation (ASM) in data from high-throughput short-read bisulfite sequencing. Simulation results indicate technical specifications of existing methylome data, such as read length and coverage, are sufficient for full-genome ASM profiling based on our model. We used our model to analyze methylomes for a diverse set of human cell types, including cultured and uncultured differentiated cells, embryonic stem cells and induced pluripotent stem cells. Regions of ASM identified most consistently across methylomes are tightly connected with known imprinted genes and precisely delineate the boundaries of several known imprinting control regions. Predicted regions of ASM common to multiple cell types frequently mark noncoding RNA promoters and represent promising starting points for targeted validation. More generally, our model provides the analytical complement to cutting-edge experimental technologies for surveying ASM in specific cell types and across species.

Download full-text

Full-text

Available from: Antoine Molaro, Jun 21, 2015
0 Followers
 · 
301 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to light at night through shiftwork has been linked to alterations in DNA methylation and increased risk of cancer development. Using an Illumina Infinium Methylation Assay, we analyzed methylation levels of 397 CpG sites in the promoter regions of 56 normally imprinted genes to investigate whether shiftwork is associated with alteration of methylation patterns. Methylation was significantly higher at 20 CpG sites and significantly lower at 30 CpG sites (P < 0.05) in 10 female long-term shiftworkers as compared to 10 female age- and folate intake-matched day workers. The strongest evidence for altered methylation patterns in shiftworkers was observed for DLX5, IGF2AS, and TP73 based on the magnitude of methylation change and consistency in the direction of change across multiple CpG sites, and consistent results were observed using quantitative DNA methylation analysis. We conclude that long-term shiftwork may alter methylation patterns at imprinted genes, which may be an important mechanism by which shiftwork has carcinogenic potential and warrants further investigation. © Environ. Mol. Mutagen., 2012. © 2012 Wiley Periodicals, Inc.
    Environmental and Molecular Mutagenesis 03/2013; 54(2). DOI:10.1002/em.21752 · 2.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genomic imprinting is an epigenetic process that restricts gene expression to either the maternally or paternally inherited allele. Many theories have been proposed to explain its evolutionary origin, but understanding has been limited by a paucity of data mapping the breadth and dynamics of imprinting within any organism. We generated an atlas of imprinting spanning 33 mouse and 45 human developmental stages and tissues. Nearly all imprinted genes were imprinted in early development and either retained their parent-of-origin expression in adults or lost it completely. Consistent with an evolutionary signature of parental conflict, imprinted genes were enriched for coexpressed pairs of maternally and paternally expressed genes, showed accelerated expression divergence between human and mouse, and were more highly expressed than their non-imprinted orthologs in other species. Our approach demonstrates a general framework for the discovery of imprinting in any species and sheds light on the causes and consequences of genomic imprinting in mammals.
    Nature Genetics 04/2015; 47(5). DOI:10.1038/ng.3274 · 29.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Both forms of facioscapulohumeral muscular dystrophy (FSHD) are associated with aberrant epigenetic regulation of the chromosome 4q35 D4Z4 macrosatellite. Chromatin changes due to large deletions of heterochromatin (FSHD1) or mutations in chromatin regulatory proteins (FSHD2) lead to relaxation of epigenetic repression and increased expression of the deleterious double homeobox 4 (DUX4) gene encoded within the distal D4Z4 repeat. However, many individuals with the genetic requirements for FSHD remain asymptomatic throughout their lives. Here we investigated family cohorts of FSHD1 individuals who were either affected (manifesting) or without any discernible weakness (nonmanifesting/asymptomatic) and their unaffected family members to determine if individual epigenetic status and stability of repression at the contracted 4q35 D4Z4 array in myocytes correlates with FSHD disease. Family cohorts were analyzed for DNA methylation on the distal pathogenic 4q35 D4Z4 repeat on permissive A-type subtelomeres. We found DNA hypomethylation in FSHD1-affected subjects, hypermethylation in healthy controls, and distinctly intermediate levels of methylation in nonmanifesting subjects. We next tested if these differences in DNA methylation had functional relevance by assaying DUX4-fl expression and the stability of epigenetic repression of DUX4-fl in myogenic cells. Treatment with drugs that alter epigenetic status revealed that healthy cells were refractory to treatment, maintaining stable repression of DUX4, while FSHD1-affected cells were highly responsive to treatment and thus epigenetically poised to express DUX4. Myocytes from nonmanifesting subjects had significantly higher levels of DNA methylation and were more resistant to DUX4 activation in response to epigenetic drug treatment than cells from FSHD1-affected first-degree relatives containing the same contraction, indicating that the epigenetic status of the contracted D4Z4 array is reflective of disease. The epigenetic status of the distal 4qA D4Z4 repeat correlates with FSHD disease; FSHD-affected subjects have hypomethylation, healthy unaffected subjects have hypermethylation, and nonmanifesting subjects have characteristically intermediate methylation. Thus, analysis of DNA methylation at the distal D4Z4 repeat could be used as a diagnostic indicator of developing clinical FSHD. In addition, the stability of epigenetic repression upstream of DUX4 expression is a key regulator of disease and a viable therapeutic target.
    Clinical Epigenetics 03/2015; 7(37). DOI:10.1186/s13148-015-0072-6 · 6.22 Impact Factor