Article

Symptoms of rapid eye movement sleep behavior disorder are associated with cholinergic denervation in Parkinson disease.

Department of Neurology, University of Michigan, Ann Arbor, USA.
Annals of Neurology (Impact Factor: 11.91). 04/2012; 71(4):560-8. DOI: 10.1002/ana.22691
Source: PubMed

ABSTRACT Rapid eye movement sleep behavior disorder (RBD) is common in Parkinson disease (PD), but its relationship to the varied neurotransmitter deficits of PD and prognostic significance remain incompletely understood. RBD and cholinergic system degeneration are identified independently as risk factors for cognitive impairment in PD. We aimed to assess the association between cholinergic denervation and symptoms of RBD in PD patients without dementia.
Eighty subjects with PD without dementia (age, 64.6 ± 7.0 years; range, 50-82 years; 60 males, 20 females; mean Montreal Cognitive Assessment Test [MoCA] score, 26.2 ± 2.1; range 21-30) underwent clinical assessment, neuropsychological testing, and [(11)C]methylpiperidyl propionate acetylcholinesterase and [(11)C]dihydrotetrabenazine (DTBZ) vesicular monoamine transporter type 2 positron emission tomography (PET) imaging. (11)C3-Amino-4-(2-dimethylaminomethyl-phenylsulfaryl)-benzonitrile (DASB) serotonin transporter PET imaging was performed in a subset of 35 subjects. The presence of RBD symptoms was determined using the Mayo Sleep Questionnaire.
Twenty-seven of 80 subjects (33.8%) indicated a history of RBD symptoms. Subjects with and without RBD symptoms showed no significant differences in age, motor disease duration, MoCA, Unified Parkinson Disease Rating Scale motor scores, or striatal DTBZ binding. Subjects with RBD symptoms, in comparison to those without, exhibited decreased neocortical, limbic cortical, and thalamic cholinergic innervation (0.0213 ± 0.0018 vs 0.0236 ± 0.0022, t = 4.55, p < 0.0001; 0.0388 ± 0.0029 vs 0.0423 ± 0.0058, t = 2.85, p = 0.0056; 0.0388 ± 0.0025 vs 0.0427 ± 0.0042, t = 4.49, p < 0.0001, respectively). Brainstem and striatal DASB binding showed no significant differences between groups.
The presence of RBD symptoms in PD is associated with relative neocortical, limbic cortical, and thalamic cholinergic denervation although not with differential serotoninergic or nigrostriatal dopaminergic denervation. The presence of RBD symptoms may signal cholinergic system degeneration.

1 Follower
 · 
99 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: REM sleep behavior disorder (RBD) is a common non motor feature of Parkinson’s Disease (PD) affecting about half the patients with this disease. Distinct structural brain tissue abnormalities have been reported in several regions modulating REM sleep of the patients with idiopathic RBD. At the present time, there are no conventional MRI studies investigating patients with PD associated with RBD. Herein, we used voxel-based morphometry (VBM) to detect the neuroanatomical profile of PD patients with and without RBD. Optimized VBM was applied to the MRI brain images in 11PD patients with RBD (PD-RBD), 11 PD patients without RBD (PD) and 18 age-and sex-matched controls. To corroborate VBM findings we used automated volumetric method (FreeSurfer) to quantify subcortical brain regions volumes. Patients and controls also underwent DAT-SPECT and cardiac MIBG scintigraphies. The VBM analysis showed markedly reduced gray matter volume in the right thalamus of PD-RBD patients in comparison with PD patients and controls. Automatic thalamic segmentation in PD-RBD patients showed a bilaterally reduced thalamic volume as compared with PD patients or controls. All PD patients (with and without RBD) showed a reduced tracer uptake on DAT-SPECT and cardiac MIBG scintigraphies as compared to controls. Our findings suggest that the presence of RBD symptoms in PD patients is associated with a reduced thalamic volume suggesting a pathophysiologic role of the thalamus in the complex circuit causing RBD.
    Parkinsonism & Related Disorders 09/2014; 20(9). DOI:10.1016/j.parkreldis.2014.06.012 · 4.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to demonstrate that two REM clusters, which emerge following bilateral pedunculopontine tegmental nucleus (PPT) lesions in rats, are two functionally distinct REM states. We performed the experiments on Wistar rats, chronically instrumented for sleep recording. Bilateral PPT lesions were produced by the microinfusion of 100 nl of 0.1M ibotenic acid (IBO). Following a recovery period of 2 weeks, we recorded their sleep for 6h. Bilateral PPT lesions were identified NADPH-diaphorase histochemistry. We applied Fourier analysis to the signals acquired throughout the 6h recordings, and each 10 s epoch was differentiated as a Wake, NREM or REM state. We analyzed the topography of the sleep/wake states architecture and their transition structure, their all state-related EEG microstructures, and the sensorimotor (SMCx) and motor (MCx) cortex REM related cortico-muscular coherences (CMCs). Bilateral PPT lesion in rats increased the likelihood of the emergence of two distinct REM sleep states, specifically expressed within the MCx: REM1 and REM2. Bilateral PPT lesion did not change the sleep/wake states architecture of the SMCx, but pathologically increased the duration of REM1 within the MCx, alongside increasing Wake/REM1/Wake and NREM/REM2/NREM transitions within both cortices. In addition, the augmented total REM SMCx EEG beta amplitude and REM1 MCx EEG theta amplitude was the underlying EEG microstructure pathology. PPT lesion induced REM1 and REM2 are differential states with regard to total EMG power, topographically distinct EEG microstructures, and locomotor drives to nuchal musculature.
    Behavioural Brain Research 06/2014; 271:258-268. DOI:10.1016/j.bbr.2014.06.026 · 3.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to identify the differences for the onset and progression of functionally distinct cholinergic innervation disorders, we investigated the effect of bilateral nucleus basalis (NB) and pedunculopontine tegmental nucleus (PPT) lesions on sleep/wake states and electroencephalographic (EEG) microstructure in rats, chronically implanted for sleep recording. Bilateral NB lesion transiently altered Wake/NREM duration within the sensorimotor cortex, and Wake/REM duration within the motor cortex, while there was no change in the sleep/wake states distributions following the bilateral PPT lesion. Bilateral PPT lesion sustainably increased the Wake/REM and REM/Wake transitions followed by inconsistent dysregulation of the NREM/REM and REM/NREM transitions in sensorimotor cortex, but oppositely by their increment throughout four weeks in motor cortex. Bilateral NB lesion sustainably decreased the NREM/REM and REM/NREM transitions during four weeks in the sensorimotor cortex, but oppositely increased them in the motor cortex. We have shown that the sustained beta and gamma augmentation within the sensorimotor and motor cortex, and across all sleep/wake states, simultaneously with Wake delta amplitude attenuation only within the sensorimotor cortex, were the underlying EEG microstructure for the sleep/wake states transitions structure disturbance following bilateral PPT lesion. In contrast, the bilateral NB lesion only augmented REM theta in sensorimotor cortex during three weeks. We have shown that the NB and PPT lesions induced differing, structure-related EEG microstructure and transition structure disturbances particularly expressed in motor cortex during NREM and REM sleep. We evidenced for the first time the different topographical expression of the functionally distinct cholinergic neuronal innervation impairment in rat.
    Behavioural Brain Research 08/2013; 256:108-118. DOI:10.1016/j.bbr.2013.07.047 · 3.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: REM sleep behavior disorder (RBD) is a common non motor feature of Parkinson’s Disease (PD) affecting about half the patients with this disease. Distinct structural brain tissue abnormalities have been reported in several regions modulating REM sleep of the patients with idiopathic RBD. At the present time, there are no conventional MRI studies investigating patients with PD associated with RBD. Herein, we used voxel-based morphometry (VBM) to detect the neuroanatomical profile of PD patients with and without RBD. Optimized VBM was applied to the MRI brain images in 11PD patients with RBD (PD-RBD), 11 PD patients without RBD (PD) and 18 age-and sex-matched controls. To corroborate VBM findings we used automated volumetric method (FreeSurfer) to quantify subcortical brain regions volumes. Patients and controls also underwent DAT-SPECT and cardiac MIBG scintigraphies. The VBM analysis showed markedly reduced gray matter volume in the right thalamus of PD-RBD patients in comparison with PD patients and controls. Automatic thalamic segmentation in PD-RBD patients showed a bilaterally reduced thalamic volume as compared with PD patients or controls. All PD patients (with and without RBD) showed a reduced tracer uptake on DAT-SPECT and cardiac MIBG scintigraphies as compared to controls. Our findings suggest that the presence of RBD symptoms in PD patients is associated with a reduced thalamic volume suggesting a pathophysiologic role of the thalamus in the complex circuit causing RBD.
    Parkinsonism & Related Disorders 09/2014; 20(9). DOI:10.1016/j.parkreldis.2014.06.012 · 4.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to demonstrate that two REM clusters, which emerge following bilateral pedunculopontine tegmental nucleus (PPT) lesions in rats, are two functionally distinct REM states. We performed the experiments on Wistar rats, chronically instrumented for sleep recording. Bilateral PPT lesions were produced by the microinfusion of 100 nl of 0.1M ibotenic acid (IBO). Following a recovery period of 2 weeks, we recorded their sleep for 6h. Bilateral PPT lesions were identified NADPH-diaphorase histochemistry. We applied Fourier analysis to the signals acquired throughout the 6h recordings, and each 10 s epoch was differentiated as a Wake, NREM or REM state. We analyzed the topography of the sleep/wake states architecture and their transition structure, their all state-related EEG microstructures, and the sensorimotor (SMCx) and motor (MCx) cortex REM related cortico-muscular coherences (CMCs). Bilateral PPT lesion in rats increased the likelihood of the emergence of two distinct REM sleep states, specifically expressed within the MCx: REM1 and REM2. Bilateral PPT lesion did not change the sleep/wake states architecture of the SMCx, but pathologically increased the duration of REM1 within the MCx, alongside increasing Wake/REM1/Wake and NREM/REM2/NREM transitions within both cortices. In addition, the augmented total REM SMCx EEG beta amplitude and REM1 MCx EEG theta amplitude was the underlying EEG microstructure pathology. PPT lesion induced REM1 and REM2 are differential states with regard to total EMG power, topographically distinct EEG microstructures, and locomotor drives to nuchal musculature.
    Behavioural Brain Research 06/2014; 271:258-268. DOI:10.1016/j.bbr.2014.06.026 · 3.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to identify the differences for the onset and progression of functionally distinct cholinergic innervation disorders, we investigated the effect of bilateral nucleus basalis (NB) and pedunculopontine tegmental nucleus (PPT) lesions on sleep/wake states and electroencephalographic (EEG) microstructure in rats, chronically implanted for sleep recording. Bilateral NB lesion transiently altered Wake/NREM duration within the sensorimotor cortex, and Wake/REM duration within the motor cortex, while there was no change in the sleep/wake states distributions following the bilateral PPT lesion. Bilateral PPT lesion sustainably increased the Wake/REM and REM/Wake transitions followed by inconsistent dysregulation of the NREM/REM and REM/NREM transitions in sensorimotor cortex, but oppositely by their increment throughout four weeks in motor cortex. Bilateral NB lesion sustainably decreased the NREM/REM and REM/NREM transitions during four weeks in the sensorimotor cortex, but oppositely increased them in the motor cortex. We have shown that the sustained beta and gamma augmentation within the sensorimotor and motor cortex, and across all sleep/wake states, simultaneously with Wake delta amplitude attenuation only within the sensorimotor cortex, were the underlying EEG microstructure for the sleep/wake states transitions structure disturbance following bilateral PPT lesion. In contrast, the bilateral NB lesion only augmented REM theta in sensorimotor cortex during three weeks. We have shown that the NB and PPT lesions induced differing, structure-related EEG microstructure and transition structure disturbances particularly expressed in motor cortex during NREM and REM sleep. We evidenced for the first time the different topographical expression of the functionally distinct cholinergic neuronal innervation impairment in rat.
    Behavioural Brain Research 08/2013; 256:108-118. DOI:10.1016/j.bbr.2013.07.047 · 3.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: REM sleep behavior disorder (RBD) is a common non motor feature of Parkinson’s Disease (PD) affecting about half the patients with this disease. Distinct structural brain tissue abnormalities have been reported in several regions modulating REM sleep of the patients with idiopathic RBD. At the present time, there are no conventional MRI studies investigating patients with PD associated with RBD. Herein, we used voxel-based morphometry (VBM) to detect the neuroanatomical profile of PD patients with and without RBD. Optimized VBM was applied to the MRI brain images in 11PD patients with RBD (PD-RBD), 11 PD patients without RBD (PD) and 18 age-and sex-matched controls. To corroborate VBM findings we used automated volumetric method (FreeSurfer) to quantify subcortical brain regions volumes. Patients and controls also underwent DAT-SPECT and cardiac MIBG scintigraphies. The VBM analysis showed markedly reduced gray matter volume in the right thalamus of PD-RBD patients in comparison with PD patients and controls. Automatic thalamic segmentation in PD-RBD patients showed a bilaterally reduced thalamic volume as compared with PD patients or controls. All PD patients (with and without RBD) showed a reduced tracer uptake on DAT-SPECT and cardiac MIBG scintigraphies as compared to controls. Our findings suggest that the presence of RBD symptoms in PD patients is associated with a reduced thalamic volume suggesting a pathophysiologic role of the thalamus in the complex circuit causing RBD.
    Parkinsonism & Related Disorders 09/2014; 20(9). DOI:10.1016/j.parkreldis.2014.06.012 · 4.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to demonstrate that two REM clusters, which emerge following bilateral pedunculopontine tegmental nucleus (PPT) lesions in rats, are two functionally distinct REM states. We performed the experiments on Wistar rats, chronically instrumented for sleep recording. Bilateral PPT lesions were produced by the microinfusion of 100 nl of 0.1M ibotenic acid (IBO). Following a recovery period of 2 weeks, we recorded their sleep for 6h. Bilateral PPT lesions were identified NADPH-diaphorase histochemistry. We applied Fourier analysis to the signals acquired throughout the 6h recordings, and each 10 s epoch was differentiated as a Wake, NREM or REM state. We analyzed the topography of the sleep/wake states architecture and their transition structure, their all state-related EEG microstructures, and the sensorimotor (SMCx) and motor (MCx) cortex REM related cortico-muscular coherences (CMCs). Bilateral PPT lesion in rats increased the likelihood of the emergence of two distinct REM sleep states, specifically expressed within the MCx: REM1 and REM2. Bilateral PPT lesion did not change the sleep/wake states architecture of the SMCx, but pathologically increased the duration of REM1 within the MCx, alongside increasing Wake/REM1/Wake and NREM/REM2/NREM transitions within both cortices. In addition, the augmented total REM SMCx EEG beta amplitude and REM1 MCx EEG theta amplitude was the underlying EEG microstructure pathology. PPT lesion induced REM1 and REM2 are differential states with regard to total EMG power, topographically distinct EEG microstructures, and locomotor drives to nuchal musculature.
    Behavioural Brain Research 06/2014; 271:258-268. DOI:10.1016/j.bbr.2014.06.026 · 3.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to identify the differences for the onset and progression of functionally distinct cholinergic innervation disorders, we investigated the effect of bilateral nucleus basalis (NB) and pedunculopontine tegmental nucleus (PPT) lesions on sleep/wake states and electroencephalographic (EEG) microstructure in rats, chronically implanted for sleep recording. Bilateral NB lesion transiently altered Wake/NREM duration within the sensorimotor cortex, and Wake/REM duration within the motor cortex, while there was no change in the sleep/wake states distributions following the bilateral PPT lesion. Bilateral PPT lesion sustainably increased the Wake/REM and REM/Wake transitions followed by inconsistent dysregulation of the NREM/REM and REM/NREM transitions in sensorimotor cortex, but oppositely by their increment throughout four weeks in motor cortex. Bilateral NB lesion sustainably decreased the NREM/REM and REM/NREM transitions during four weeks in the sensorimotor cortex, but oppositely increased them in the motor cortex. We have shown that the sustained beta and gamma augmentation within the sensorimotor and motor cortex, and across all sleep/wake states, simultaneously with Wake delta amplitude attenuation only within the sensorimotor cortex, were the underlying EEG microstructure for the sleep/wake states transitions structure disturbance following bilateral PPT lesion. In contrast, the bilateral NB lesion only augmented REM theta in sensorimotor cortex during three weeks. We have shown that the NB and PPT lesions induced differing, structure-related EEG microstructure and transition structure disturbances particularly expressed in motor cortex during NREM and REM sleep. We evidenced for the first time the different topographical expression of the functionally distinct cholinergic neuronal innervation impairment in rat.
    Behavioural Brain Research 08/2013; 256:108-118. DOI:10.1016/j.bbr.2013.07.047 · 3.39 Impact Factor