ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome

Department of Molecular Physiology and Biophysics, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, Iowa, USA.
Nature Genetics (Impact Factor: 29.65). 04/2012; 44(5):575-80. DOI: 10.1038/ng.2252
Source: PubMed

ABSTRACT Walker-Warburg syndrome (WWS) is clinically defined as congenital muscular dystrophy that is accompanied by a variety of brain and eye malformations. It represents the most severe clinical phenotype in a spectrum of diseases associated with abnormal post-translational processing of a-dystroglycan that share a defect in laminin-binding glycan synthesis1. Although mutations in six genes have been identified as causes of WWS, only half of all individuals with the disease can currently be diagnosed on this basis2. A cell fusion complementation assay in fibroblasts from undiagnosed individuals with WWS was used to identify five new complementation groups. Further evaluation of one group by linkage analysis and targeted sequencing identified recessive mutations in the ISPD gene (encoding isoprenoid synthase domain containing). The pathogenicity of the identified ISPD mutations was shown by complementation of fibroblasts with wild-type ISPD. Finally, we show that recessive mutations in ISPD abolish the initial step in laminin-binding glycan synthesis by disrupting dystroglycan O-mannosylation. This establishes a new mechanism for WWS pathophysiology.

Download full-text


Available from: Tobias Willer, Dec 17, 2014
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in POMT1 lead to a group of neuromuscular conditions ranging in severity from Walker-Warburg syndrome to limb girdle muscular dystrophy. We report two male siblings, ages 19 and 14, and an unrelated 6-year old female with early onset muscular dystrophy and intellectual disability with minimal structural brain anomalies and no ocular abnormalities. Compound heterozygous mutations in POMT1 were identified including a previously reported nonsense mutation (c.2167dupG; p.Asp723Glyfs∗8) associated with Walker-Warburg syndrome and a novel missense mutation in a highly conserved region of the protein O-mannosyltransferase 1 protein (c.1958C>T; p.Pro653Leu). This novel variant reduces the phenotypic severity compared to patients with homozygous c.2167dupG mutations or compound heterozygous patients with a c.2167dupG mutation and a wide range of other mutant POMT1 alleles.
    Neuromuscular Disorders 04/2014; 24(4). DOI:10.1016/j.nmd.2014.01.001 · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fukuyama-type congenital muscular dystrophy (FCMD, MIM#253800) is an autosomal recessive disorder characterized by severe muscular dystrophy associated with brain malformations. FCMD is the second most common form of muscular dystrophy after Duchenne muscular dystrophy and one of the most common autosomal recessive diseases among the Japanese population, and yet few patients outside of Japan had been reported with this disorder. We report the first known Egyptian patient with FCMD, established by clinical features of generalized weakness, pseudohypertrophy of calf muscles, progressive joint contractures, severe scoliosis, elevated serum creatine kinase level, myopathic electrodiagnostic changes, brain MRI with cobblestone complex, and mutation in the fukutin gene. In addition, our patient displayed primary microcephaly, not previously reported associated with fukutin mutations. Our results expand the geographic and clinical spectrum of fukutin mutations.
    Gene 02/2014; DOI:10.1016/j.gene.2014.01.070 · 2.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alpha-dystroglycanopathy is caused by the glycosylation defects of α-dystroglycan (α-DG). The clinical spectrum ranges from severe congenital muscular dystrophy (CMD) to later-onset limb girdle muscular dystrophy (LGMD). Among all α-dystroglycanopathies, LGMD type 2I caused by FKRP mutations is most commonly seen in Europe but appears to be rare in Asia. We screened uncategorized 40 LGMD and 10 CMD patients by immunohistochemistry for α-DG and found 7 with reduced α-DG immunostaining. Immunoblotting with laminin overlay assay confirmed the impaired glycosylation of α-DG. Among them, five LGMD patients harbored FKRP mutations leading to the diagnosis of LGMD2I. One common mutation, c.948delC, was identified and cardiomyopathy was found to be very common in our cohort. Muscle images showed severe involvement of gluteal muscles and posterior compartment at both thigh and calf levels, which is helpful for the differential diagnosis. Due to the higher frequency of LGMD2I with cardiomyopathy in our series, the early introduction of mutation analysis of FKRP in undiagnosed Taiwanese LGMD patients is highly recommended.
    Neuromuscular Disorders 06/2013; 23(8). DOI:10.1016/j.nmd.2013.05.010 · 3.13 Impact Factor