Article

Individual differences in premotor and motor recruitment during speech perception.

Medical Research Council, Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 7EF, England, UK.
Neuropsychologia (Impact Factor: 3.48). 04/2012; 50(7):1380-92. DOI: 10.1016/j.neuropsychologia.2012.02.023
Source: PubMed

ABSTRACT Although activity in premotor and motor cortices is commonly observed in neuroimaging studies of spoken language processing, the degree to which this activity is an obligatory part of everyday speech comprehension remains unclear. We hypothesised that rather than being a unitary phenomenon, the neural response to speech perception in motor regions would differ across listeners as a function of individual cognitive ability. To examine this possibility, we used functional magnetic resonance imaging (fMRI) to investigate the neural processes supporting speech perception by comparing active listening to pseudowords with matched tasks that involved reading aloud or repetition, all compared to acoustically matched control stimuli and matched baseline tasks. At a whole-brain level there was no evidence for recruitment of regions in premotor or motor cortex during speech perception. A focused region of interest analysis similarly failed to identify significant effects, although a subset of regions approached significance, with notable variability across participants. We then used performance on a battery of behavioural tests that assessed meta-phonological and verbal short-term memory abilities to investigate the reasons for this variability, and found that individual differences in particular in low phonotactic probability pseudoword repetition predicted participants' neural activation within regions in premotor and motor cortices during speech perception. We conclude that normal listeners vary in the degree to which they recruit premotor and motor cortex as a function of short-term memory ability. This is consistent with a resource-allocation approach in which recruitment of the dorsal speech processing pathway depends on both individual abilities and specific task demands.

0 Bookmarks
 · 
117 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oscillatory models of speech processing have proposed that rhythmic cortical oscillations in sensory and motor regions modulate speech sound processing from the bottom-up via phase reset at low frequencies (3-10 Hz) and from the top-down via the disinhibition of alpha/beta rhythms (8-30 Hz). To investigate how the proposed rhythms mediate perceptual performance, electroencephalographic (EEG) was recorded while participants passively listened to or actively identified speech and tone-sweeps in a two-force choice in noise discrimination task presented at high and low signal-to-noise ratios. EEG data were decomposed using independent component analysis and clustered across participants using principle component methods in EEGLAB. Left and right hemisphere sensorimotor and posterior temporal lobe clusters were identified. Alpha and beta suppression was associated with active tasks only in sensorimotor and temporal clusters. In posterior temporal clusters, increases in phase reset at low frequencies were driven by the quality of bottom-up acoustic information for speech and non-speech stimuli, whereas phase reset in sensorimotor clusters was associated with top-down active task demands. A comparison of correct discrimination trials to those identified at chance showed an earlier performance related effect for the left sensorimotor cluster relative to the left-temporal lobe cluster during the syllable discrimination task only. The right sensorimotor cluster was associated with performance related differences for tone-sweep stimuli only. Findings are consistent with internal model accounts suggesting that early efferent sensorimotor models transmitted along alpha and beta channels reflect a release from inhibition related to active attention to auditory discrimination. Results are discussed in the broader context of dynamic, oscillatory models of cognition proposing that top-down internally generated states interact with bottom-up sensory processing to enhance task performance.
    Frontiers in Psychology 01/2014; 5:366. · 2.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activity in anterior sensorimotor regions is found in speech production and some perception tasks. Yet, how sensorimotor integration supports these functions is unclear due to a lack of data examining the timing of activity from these regions. Beta (~20 Hz) and alpha (~10 Hz) spectral power within the EEG μ rhythm are considered indices of motor and somatosensory activity, respectively. In the current study, perception conditions required discrimination (same/different) of syllables pairs (/ba/ and /da/) in quiet and noisy conditions. Production conditions required covert and overt syllable productions and overt word production. Independent component analysis was performed on EEG data obtained during these conditions to (1) identify clusters of μ components common to all conditions and (2) examine real-time event-related spectral perturbations (ERSP) within alpha and beta bands. 17 and 15 out of 20 participants produced left and right μ-components, respectively, localized to precentral gyri. Discrimination conditions were characterized by significant (pFDR < 0.05) early alpha event-related synchronization (ERS) prior to and during stimulus presentation and later alpha event-related desynchronization (ERD) following stimulus offset. Beta ERD began early and gained strength across time. Differences were found between quiet and noisy discrimination conditions. Both overt syllable and word productions yielded similar alpha/beta ERD that began prior to production and was strongest during muscle activity. Findings during covert production were weaker than during overt production. One explanation for these findings is that μ-beta ERD indexes early predictive coding (e.g., internal modeling) and/or overt and covert attentional/motor processes. μ-alpha ERS may index inhibitory input to the premotor cortex from sensory regions prior to and during discrimination, while μ-alpha ERD may index sensory feedback during speech rehearsal and production.
    Frontiers in Psychology 01/2014; 5:656. · 2.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lesion and neuroimaging studies indicate that the insula mediates motor aspects of speech production, specifically, articulatory control. Although it has direct connections to Broca’s area, the canonical speech production region, the insula is also broadly connected with other speech and language centres, and may play a role in coordinating higher-order cognitive aspects of speech and language production. The extent of the insula’s involvement in speech and language processing was assessed using the Activation Likelihood Estimation (ALE) method. Meta-analyses of 42 fMRI studies with healthy adults were performed, comparing insula activation during performance of language (expressive and receptive) and speech (production and perception) tasks. Both tasks activated bilateral anterior insulae. However, speech perception tasks preferentially activated the left dorsal mid-insula, whereas expressive language tasks activated left ventral mid-insula. Results suggest distinct regions of the mid-insula play different roles in speech and language processing.
    Brain and Language 01/2014; 135:96–103. · 3.39 Impact Factor

Full-text (2 Sources)

Download
18 Downloads
Available from
May 16, 2014