Article

Molecular chaperone involvement in chloroplast protein import

Department of Biology, University of Leicester, Leicester LE1 7RH, UK
Biochimica et Biophysica Acta (Impact Factor: 4.66). 04/2012; 1833(2). DOI: 10.1016/j.bbamcr.2012.03.019
Source: PubMed

ABSTRACT Chloroplasts are organelles of endosymbiotic origin that perform essential functions in plants. They contain about 3000 different proteins, the vast majority of which are nucleus-encoded, synthesized in precursor form in the cytosol, and transported into the chloroplasts post-translationally. These preproteins are generally imported via envelope complexes termed TOC and TIC (Translocon at the Outer/Inner envelope membrane of Chloroplasts). They must navigate different cellular and organellar compartments (e.g., the cytosol, the outer and inner envelope membranes, the intermembrane space, and the stroma) before arriving at their final destination. It is generally considered that preproteins are imported in a largely unfolded state, and the whole process is energy-dependent. Several chaperones and cochaperones have been found to mediate different stages of chloroplast import, in similar fashion to chaperone involvement in mitochondrial import. Cytosolic factors such as Hsp90, Hsp70 and 14-3-3 may assist preproteins to reach the TOC complex at the chloroplast surface, preventing their aggregation or degradation. Chaperone involvement in the intermembrane space has also been proposed, but remains uncertain. Preprotein translocation is completed at the trans side of the inner membrane by ATP-driven motor complexes. A stromal Hsp100-type chaperone, Hsp93, cooperates with Tic110 and Tic40 in one such motor complex, while stromal Hsp70 is proposed to act in a second, parallel complex. Upon arrival in the stroma, chaperones (e.g., Hsp70, Cpn60, cpSRP43) also contribute to the folding, assembly or onward intraorganellar guidance of the proteins. In this review, we focus on chaperone involvement during preprotein translocation at the chloroplast envelope. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.

2 Followers
 · 
98 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations that eliminate chloroplast translation in Arabidopsis result in embryo lethality. The stage of embryo arrest, however, can be influenced by genetic background. To identify genes responsible for improved growth in the absence of chloroplast translation, we examined seedling responses of different Arabidopsis accessions on spectinomycin, an inhibitor of chloroplast translation, and crossed the most tolerant accessions with embryo-defective mutants disrupted in chloroplast ribosomal proteins generated in a sensitive background. The results indicate that tolerance is mediated by ACC2, a duplicated nuclear gene that targets homomeric acetyl-CoA carboxylase (ACCase) to plastids, where the multi-domain protein can participate in fatty acid biosynthesis. In the presence of functional ACC2, tolerance is enhanced by a second locus that maps to chromosome 5 and heightened by additional genetic modifiers present in the most tolerant accessions. Notably, some of the most sensitive accessions contain nonsense mutations in ACC2, including the "Nossen" line used to generate several of the mutants studied here. Functional ACC2 protein is therefore not required for survival in natural environments, where heteromeric ACCase encoded in part by the chloroplast genome can function instead. This work highlights an interesting example of a tandem gene duplication in Arabidopsis, helps to explain the range of embryo phenotypes found in Arabidopsis mutants disrupted in essential chloroplast functions, addresses the nature of essential proteins encoded by the chloroplast genome, and underscores the value of using natural variation to study the relationship between chloroplast translation, plant metabolism, protein import, and plant development.
    Plant physiology 10/2014; DOI:10.1104/pp.114.249052 · 7.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previously, we identified the N-terminal domain of transit peptides (TPs) as a major determinant for the translocation step in plastid protein import. Analysis of Arabidopsis TP dataset revealed that this domain has two overlapping characteristics, highly uncharged and Hsp70-interacting. To investigate these two properties, we replaced the N-terminal domains of the TP of the small subunit of ribulose-1,5-bis-phosphate carboxylase/oxygenase and its reverse peptide with a series of unrelated peptides whose affinities to the chloroplast stromal Hsp70 have been determined. Bioinformatic analysis indicated that eight out of nine peptides in this series are not similar to TP N-termini. Using in vivo and in vitro protein import assays, the majority of the precursors containing Hsp70-binding elements were targeted to plastids, while none of the chimeric precursors lacking an N-terminal Hsp70-binding element were targeted to the plastids. Moreover, a pulse-chase assay showed that two chimeric precursors with the most uncharged peptides failed to translocate into the stroma. The ability of multiple unrelated Hsp70-binding elements to support protein import verified that the majority of TPs utilize an N-terminal Hsp70-binding domain during translocation and expand the mechanistic view of the import process. This work also indicates that synthetic biology may be utilized to create de novo TPs that exceed the targeting activity of naturally occurring sequences. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    Journal of Biological Chemistry 02/2015; 290(12). DOI:10.1074/jbc.M114.633586 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plastids are a class of essential plant cell organelles comprising photosynthetic chloroplasts of green tissues, starch-storing amyloplasts of roots and tubers or the colorful pigment-storing chromoplasts of petals and fruits. They express a few genes encoded on their organellar genome, called plastome, but import most of their proteins from the cytosol. The import into plastids, the folding of freshly-translated or imported proteins, the degradation or renaturation of denatured and entangled proteins, and the quality-control of newly folded proteins all require the action of molecular chaperones. Members of all four major families of ATP-dependent molecular chaperones (chaperonin/Cpn60, Hsp70, Hsp90 and Hsp100 families) have been identified in plastids from unicellular algae to higher plants. This review aims at giving an overview of the most current insights on these plastid chaperones, their general and conserved functions but also their specific plastid functions. Given that chloroplasts harbor an extreme environment that cycles between reduced and oxidized states, that has to deal with reactive oxygen species and is highly reactive to environmental and developmental signals, it can be presumed that plastid chaperones have evolved a plethora of specific functions some of which are just about to be discovered. Here, the most urgent questions that remain unsolved are discussed, and guidance for future research on plastid chaperones is given. Copyright © 2015. Published by Elsevier B.V.
    Biochimica et Biophysica Acta (BBA) - Bioenergetics 01/2015; DOI:10.1016/j.bbabio.2015.01.002 · 4.83 Impact Factor

Preview

Download
5 Downloads
Available from

Similar Publications