Article

Gastric cancer cell supernatant causes apoptosis and fibrosis in the peritoneal tissues and results in an environment favorable to peritoneal metastases, in vitro and in vivo.

Department of Oncology, The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning Province, China. .
BMC Gastroenterology (Impact Factor: 2.11). 04/2012; 12:34. DOI: 10.1186/1471-230X-12-34
Source: PubMed

ABSTRACT In this study, we examined effects of soluble factors released by gastric cancer cells on peritoneal mesothelial cells in vitro and in vivo.
HMrSV5, a human peritoneal mesothelial cell line, was incubated with supernatants from gastric cancer cells. Morphological changes of HMrSV5 cells were observed. Apoptosis of HMrSV5 cells was observed under a transmission electron microscope and quantitatively determined by MTT assay and flow cytometry. Expressions of apoptosis-related proteins (caspase-3, caspase-8, Bax, bcl-2) were immunochemically evaluated.
Conspicuous morphological changes indicating apoptosis were observed in HMrSV5 cells 24 h after treatment with the supernatants of gastric cancer cells. In vivo, peritoneal tissues treated with gastric cancer cell supernatant were substantially thickened and contained extensive fibrosis.
These findings demonstrate that supernatants of gastric cancer cells can induce apoptosis and fibrosis in HMrSV5 human peritoneal mesothelial cells through supernatants in the early peritoneal metastasis, in a time-dependent manner, and indicate that soluble factors in the peritoneal cavity affect the morphology and function of mesothelial cells so that the resulting environment can become favorable to peritoneal metastases.

0 Bookmarks
 · 
85 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pleural dissemination is commonly associated with metastatic advanced lung cancer. The injury of pleural mesothelial cells (PMCs) by soluble factors, such as transforming growth factor-beta1 (TGF-β1), is a major driver of lung cancer pleural dissemination (LCPD). In this study, we examine the effects of TGF-β1 on PMC injury and the ability of TGF-β1 inhibition to alleviate this effect both in vitro and in vivo. PMCs were co-cultured with the high TGF-β1-expressing lung cancer cell line A549 and with various TGF-β1 signaling inhibitors. Expression of cleaved-caspase 3, cleaved-caspase 9, p21, and p16 were evaluated by Western blot and immunofluorescent confocal imaging. Apoptosis was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltrazoliumbromide assay and AnnexinV-propidium iodide (PI) staining. PMC senescence was assessed by staining for senescence-associated β-galactosidase (SA-β-Gal). The ability of lung cancer cells (LCCs) to adhere to injured PMCs was investigated using an LCC-PMC adhesion assay. In our mouse model, PMC injury status was monitored by hematoxylin-eosin (H&E) and Masson's trichrome staining. LCCs expressing high levels of TGF-β1 induce apoptosis and senescence of PMCs in a co-culture system. Injured PMCs adhere to LCCs, which may further promote LCPD. Importantly, PMC monolayer injury could be reversed with TGF-β1 inhibitors. This was consistent with our in vivo data showing that the TGF-β1 inhibitor SB-431542 attenuated PMC barrier injury induced by A549 culture medium in our mouse model. Our study highlights the importance of TGF-β1 signaling in LCPD and establishes this signaling pathway as a potential therapeutic target in the disease.
    Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 11/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peritoneal dissemination is the most frequent metastatic pattern of advanced gastric cancer and the main cause of death in gastric cancer patients. Transforming growth factor-beta1 (TGF- ß1), one of the most potent fibrotic stimuli for human peritoneal mesothelial cells, has been shown to play an important role in this process. In this study, we investigated the effect of TGF- ß1 signaling blockade in gastric cancer cell (GCC)-induced human peritoneal mesothelial cell (HPMC) fibrosis. HPMCs were cocultured with the high TGF- ß1 expressing GCC line SGC-7901 and various TGF- ß1 signaling inhibitors or SGC-7901 transfected with TGF-ß1-specific siRNA. HPMC fibrosis was monitored on the basis of morphology. Expression of the epithelial cell marker, E-cadherin, and the mesenchymal marker, α-smooth muscle actin (α-SMA), was evaluated by Western blotting and immunofluorescence confocal imaging. GCC adhesion to HPMC was also assayed. In nude mouse tumor model, the peritoneal fibrotic status was monitored by immunofluorescent confocal imaging and Masson's trichrome staining; formation of metastatic nodular and ascites fluid was also evaluated. Our study demonstrated that GCC expressing high levels of TGF-ß1 induced HMPC fibrosis, which is characterized by both upregulation of E-cadherin and downregulation of α-SMA. Furthermore, HPMC monolayers fibrosis was reversed by TGF- ß1 signaling blockade. In vivo, the TGF- ß1 receptor inhibitor SB-431542 partially attenuated early-stage gastric cancer peritoneal dissemination (GCPD). In conclusion, our study confirms the significance of TGFß1 signaling blockade in attenuating GCPD and may provide a therapeutic target for clinical therapy.
    Tumor Biology 12/2013; · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peritoneal dissemination is highly frequent in gastric cancer. Damage to human peritoneal mesothelial cell (HPMC) barriers provokes gastric cancer peritoneal dissemination (GCPD), the key events during GCPD, is characterized by fibroblastic development. In this study, we have studied the association between fibroblast activation protein (FAP) expression in peritoneum and the pathological features of the primary tumor. The clinical prognosis of gastric cancer patients was evaluated according to FAP expression. In a gastric cancer cell-HPMC co-culture system, expression of E-cadherin, α-smooth muscle actin, and FAP were evaluated by Western blotting. Gastric cancer cell migration and adhesion to HPMC were also assayed. Our results showed positive peritoneal staining of FAP in 36/86 cases (41.9 %), which was associated with a higher TNM stage in primary gastric cancer and higher incidence of GCPD (both p < 0.05). Survival analysis showed FAP expression was an independent prognostic factor of poor survival (p = 0.02). Peritoneum of FAP-positive expression exhibited a distinct fibrotic development and expressed higher level of the mesenchymal marker α-SMA, which was confirmed by the in vitro Western blot assay. In HPMC and gastric cancer cell adherence assay, SGC-7901 cells preferentially adhered to TA-HPMC at different cell densities (both p < 0.05). Additionally, SGC-7901 cells were more prone to chemotaxis by FAP-expressed tumor-associated-human peritoneal mesothelial cells (TA-HPMC) compared with HPMC co-cultured with normal gastric glandular epithelial cells in a time-dependent manner (both p < 0.05). Our study indicated a positive correlation between peritoneum FAP expression and GCPD. FAP-expressed TA-HPMC might be an important cellular component and instigator of GCPD.
    Tumor Biology 03/2014; · 2.52 Impact Factor

Full-text (2 Sources)

Download
9 Downloads
Available from
May 28, 2014