Article

Electrochemical aptamer-based sandwich assays for the detection of explosives.

Analytical Chemistry (Impact Factor: 5.7). 04/2012; 84(10):4245-7. DOI: 10.1021/ac300606n
Source: PubMed

ABSTRACT Electrochemical impedance spectroscopy (EIS) is used to detect 2,4,6-trinitrotoluene (TNT) in a novel sandwiched structure which relies on the specific interactions between (i) primary amine with TNT and (ii) TNT and anti-TNT aptamer. With pure targets, the assay has a sensitivity of 10(-14) M, a dynamic range of 10(-14)-10(-3) M, and employs a small sample volume (25 μL). The method's sensitivity is comparable to state of the art optical methods with the added advantages of electrochemical detection, which can be easily miniaturized and implemented into a hand-held device.

1 Bookmark
 · 
146 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel electrochemical immunosensor capable of enzyme-free detection of alpha fetoprotein (AFP) is reported. This immunosensor was fabricated in a sandwich-like format where catalytic Au-Pd nanocrystals and highly conductive N-doped graphene sheets were incorporated. The significant catalysis by Au-Pd nanocrystals toward hydrogen peroxide, along with the increased electron transfer by graphene sheets, caused signal generation and increased sensitivity, which enables the enzyme-free detection of AFP. With a low detection limit at 0.005ngmL(-1), this novel immunosensor worked well over the broad linear range of 0.05-30ngmL(-1). Unlike previously reported enzyme-based electrochemical immunosensors, which often involve the complicated steps for enzyme loading and necessary treatments to keep the activity of enzyme, this novel immunosensor is simple in nature and employed catalytic Au-Pd nanoparticles and highly conductive graphene, which thus enables reliable and sensitive detection for clinic usage.
    Biosensors & bioelectronics 05/2013; 49C:222-225. · 5.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A facile and universal aptamer-based label-free approach for highly selective and sensitive fluorescence detection of a broad range of targets including small molecules, inorganic ions and proteins was developed by using PicoGreen to transduce the fluorescent signal of the double stranded DNA duplex formed between a free aptamer and its complementary strand.
    Chemical Communications 05/2013; · 6.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gold nanoparticles (AuNPs) based fluorescence quenching or colorimetric aptasensor have been developed for many analytes recently largely because of the ease of detection, high sensitivity, and potential for high-throughput analysis. However, the effects of remnant non-AuNPs components in the colloid gold solution on these assays performance remain unclear. For the first time, we demonstrated that the remnant sodium citrate and the reaction products of three acids play counteractive roles in AuNPs based fluorescence quenching and colorimetric aptasensor in three ways in this study. First, the remnant sodium citrate in the colloid gold solution could increase the fluorescence intensity of FAM labeled on the aptamer that reduce the efficiency of AuNPs fluorescent quenching. Second, the reaction products of citric acid, HCl and ketoglutaric acid reduce the fluorescence recovery by quenching the fluorescence of FAM labeled on the aptamer dissociated from the surface of AuNPs upon addition of target. Lastly, the reaction products of three acids reduce the pH value of the colloid gold solution that reduce the sensitivity of AuNPs based colorimetric aptasensor by increasing the adsorption of aptamer to surface of AuNPs. With sulfadimethoxine and thrombin as model analytes, we found that water resuspended AuNPs can significantly increase the sensitivity by more than 10-fold for AuNPs based fluorescence quenching aptasensor. In the AuNPs based colorimetric aptasensor for sulfadimethoxine using the water resuspended AuNPs, the sensitivity also was increased by 10-fold compared with that of original AuNPs. The findings in this study provide theoretical guidance for further improving AuNPs based fluorescent quenching and colorimetric aptasensor by adjusting the composition of AuNPs solution.
    Biosensors & bioelectronics 09/2013; 52C:265-270. · 5.43 Impact Factor