Article

Glial cell line-derived neurotrophic factor promotes invasive behaviour in testicular seminoma cells.

Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Fondazione Pasteur Cenci Bolognetti, Sapienza University of Rome, Rome Department of Experimental Medicine, Second University of Naples, Naples Department of Radiological, Oncologic and Pathologic Sciences, Sapienza University of Rome, Rome, Italy.
International Journal of Andrology (Impact Factor: 3.21). 04/2012; 35(5):758-68. DOI: 10.1111/j.1365-2605.2012.01267.x
Source: PubMed

ABSTRACT The glial cell line-derived neurotrophic factor (GDNF) has multiple functions that promote cell survival, proliferation and migration in different cell types. The experimental over-expression of GDNF in mouse testis leads to infertility and promotes seminomatous germ cell tumours in older animals, which suggests that deregulation of the GDNF pathway may be implicated in germ cell carcinogenesis. GDNF activates downstream pathways upon binding to its specific co-receptor GDNF family receptor-a 1 (GFRA1). This complex then interacts with Ret and other co-receptors to activate several intracellular signalling cascades. To explore the involvement of the GDNF pathway in the onset and progression of testicular germ cell tumours, we analysed GFRA1 and Ret expression patterns in seminoma samples. We demonstrated, via immunohistochemistry, that GFRA1, but not Ret, is over-expressed in in situ carcinoma (CIS) and in intratubular and invasive seminoma cells compared with normal human germ cells. Functional analysis of the GDNF biological activity was performed on TCam-2 seminoma cell line. Reverse transcription-PCR (RT-PCR) and immunohistochemical analyses demonstrate that TCam-2 cells express both GFRA1 and Ret mRNA, but only GFRA1 was detected at the protein level. In TCam-2 cells, although GDNF is not mitogenic, it is able to induce migration, as demonstrated by a Boyden chamber assay, possibly through the Src and MEK pathways. Moreover, GDNF promotes invasive behaviour, an effect dependent on pericellular protease activity, possibly through the activity of matrix metalloproteinases. GFRA1 over-expression in CIS and seminoma cells, along with the functional analyses in TCam-2 cells, suggests an involvement of the GDNF pathway in the progression of testicular germ cell cancer.

1 Follower
 · 
108 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spermatogonial stem cells (SSCs) are pluripotent elements found in the adult seminiferous epithelium between Sertoli cells and a basal lamina which covers the multilayered external wall of peritubular myoid cells. The microenvironment of this pluripotent stem cell niche creates the complex and dynamic system that is necessary for the initiation of spermatogenesis, but this system also contains factors which can potentially collaborate in the progression of testicular germ cell tumors (TGCTs). In this review, we summarize our current knowledge about some important structural and molecular features related to the SSC niche, including growth factors, adhesion molecules, extracellular matrix, mechanical stress and vascularization. We discuss their possible collaborative effects on the generation and progression of TGCTs, which are a type of cancer representing the most frequent neoplasia among young men and whose incidence has grown very quickly during the past decades in North America and Europe. In this regard, a better understanding of the pluripotent stem cell niche where these malignancies arise will provide further insights into the origin of TGCTs and the mechanisms underlying their growth and invasion of adjacent and distant tissues.
    The International journal of developmental biology 01/2013; 57(2-3-4):185-195. DOI:10.1387/ijdb.130068ja · 2.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In mammals, the biological activity of the stem/progenitor compartment sustains production of mature gametes through spermatogenesis. Spermatogonial stem cells and their progeny belong to the class of undifferentiated spermatogonia, a germ cell population found on the basal membrane of the seminiferous tubules. A large body of evidence has demonstrated that glial cell line-derived neurotrophic factor (GDNF), a Sertoli-derived factor, is essential for in vivo and in vitro stem cell self-renewal. However, the mechanisms underlying this activity are not completely understood. In this study, we show that GDNF induces dose-dependent directional migration of freshly selected undifferentiated spermatogonia, as well as germline stem cells in culture, using a Boyden chamber assay. GDNF-induced migration is dependent on the expression of the GDNF co-receptor GFRA1, as shown by migration assays performed on parental and GFRA1-transduced GC-1 spermatogonial cell lines. We found that the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP) is specifically expressed in undifferentiated spermatogonia. VASP belongs to the ENA/VASP family of proteins implicated in actin-dependent processes, such as fibroblast migration, axon guidance, and cell adhesion. In intact seminiferous tubules and germline stem cell cultures, GDNF treatment up-regulates VASP in a dose-dependent fashion. These data identify a novel role for the niche-derived factor GDNF, and they suggest that GDNF may impinge on the stem/progenitor compartment, affecting the actin cytoskeleton and cell migration.
    PLoS ONE 04/2013; 8(4):e59431. DOI:10.1371/journal.pone.0059431 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Forensic pathologists are often asked to provide evidence of asphyxia death in the trial and a histological marker of asphyxiation would be of great help. Data from the literature indicate that the reaction of lung tissue cells to asphyxia may be of more interest for forensic purposes than migrating cells. The lungs of 62 medico-legal autopsy cases, 34 acute mechanical asphyxia (AMA), and 28 control cases (CC), were immunostained with anti-P-selectin, anti-E-selectin, anti-SP-A, and anti-HIF1-α antibodies, in order to verify if some of them may be used as markers of asphyxia death. Results show that P- and E-selectins expression in lung vessels, being activated by several types of trigger stimuli not specific to hypoxia, cannot be used as indicator of asphyxia. Intra-alveolar granular deposits of SP-A seem to be related to an intense hypoxic stimulus, and when massively present, they can suggest, together with other elements, a severe hypoxia as the mechanism of death. HIF1-α was expressed in small-, medium-, and large-caliber lung vessels of the vast majority of mechanical asphyxia deaths and CO intoxications, with the number and intensity of positive-stained vessels increasing with the duration of the hypoxia. Although further confirmation studies are required, these preliminary data indicate an interesting potential utility of HIF1-α as a screening test for asphyxia deaths.
    Deutsche Zeitschrift für die Gesamte Gerichtliche Medizin 05/2013; 128(1). DOI:10.1007/s00414-013-0876-x · 2.60 Impact Factor
Show more