Article

Introduction of Cry1Ab gene in Gossypium hirsutum enhances Resistance against Lepidopteran Pests

SPANISH JOURNAL OF AGRICULTURAL RESEARCH (Impact Factor: 0.51). 01/2011; 9:296-302.
0 Followers
 · 
102 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cotton is considered as the foremost commercially important fiber crop and is deemed as the backbone of the textile industry. The productivity of cotton crop, worldwide, is severely hampered by the occurrence of pests, weeds, pathogens apart from various environmental factors. Several beneficial agronomic traits, viz., early maturity, improved fiber quality, heat tolerance, etc. have been successfully incorporated into cotton varieties employing conventional hybridization and mutation breeding. Crop losses, due to biotic factors, are substantial and may be reduced through certain crop protection strategies. In recent years, pioneering success has been achieved through the adoption of modern biotechnological approaches. Genetically engineered cotton varieties, expressing Bacillus thuringiensis cry genes, proved to be highly successful in controlling the bollworm complex. Various other candidate genes responsible for resistance to insect pests and pathogens, tolerance to major abiotic stress factors such as temperature, drought and salinity, have been introduced into cotton via genetic engineering methods to enhance the agronomic performance of cotton cultivars. Furthermore, genes for improving the seed oil quality and fiber characteristics have been identified and introduced into cotton cultivars. This review provides a brief overview of the various advancements made in cotton through genetic engineering approaches.
    Critical Reviews in Biotechnology 06/2014; 34(2):144-160. DOI:10.3109/07388551.2012.743502 · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study was conducted to evaluate inheritance pattern of insecticidal gene (Cry1Ab) in F1 and F2 generations derived from six combinations of crosses made between two transgenic lines (CEMB-3 and CEMB-11) and two non transgenic lines (MNH-93 and CIM-482). PCR, southern blot, western dot blot assay and lab biotoxicity assay were used to confirm the gene integration and expression of insecticidal gene in successive generations. The insecticidal gene was stably integrated in the genome of all F1 plants showing the dominant nature of introduced gene (cry1Ab). Furthermore, heterosis, heterobeltiosis, heritability and genetic advance studies of Bt gene were also conducted. Heterosis and heterobeltiosis were estimated for five characters i.e. cotton yield per plant, no. of bolls per plant, boll weight, ginning out turn % age and laboratory bioassay results. The heterosis and heterobeltiosis ranged from—15.19 to 107.07% and 18.58 to 98.79%, respectively for yield per plant; from −20.34 to 81.36% and −20.34 to 81.36%, respectively for number of bolls per plant; from -6.96 to 21.38% and −9.30 to 9.99%, respectively for boll weight; from 13.02 to 26.44% and −0.52 to 26.17%, respectively for ginning outturn; and from −8.11 to 36.23% and −5.56 to 23.68%, respectively for mortality % age of Heliothis larvae in laboratory bioassays. The Broad Sense Heritability and Genetic Advance for insect resistance in Bt versus non-Bt crosses were calculated. Both of these were high in four out of six hybrids. Our data recorded showed that these transgenic lines are an excellent source of germplasm to be used in conventional breeding programme.
    Russian Agricultural Sciences 05/2012; 38(3). DOI:10.3103/S106836741203007X
  • Source
    Euphytica 07/2012; 163:65-74. DOI:10.1007/s10681-011-0497-8 · 1.69 Impact Factor