Article

Insight into the structure of vanadium containing glasses: A molecular dynamics study

Journal of Non-Crystalline Solids (Impact Factor: 1.72). 07/2011; DOI: 10.1016/j.jnoncrysol.2011.02.002

ABSTRACT In this manuscript, classical molecular dynamics simulations (MD) have been applied to study the short and medium range order of very complex vanadium containing glasses with the aim of improving the first microscopic picture of such materials. A rigid ionic force-field has been extended to include the V(5+)-O, V(4+)-O and Cu(2+)-O interatomic pair parameters and tested to reproduce structural properties of known crystal phases with quite good accuracy. Then the structure of Na(2)O-SiO(2), CaO-MgO-Al(2)O(3)-SiO(2) and Na(2)O-P(2)O(5) glass compositions in which vanadium is present in the range 1-72 wt.% (0.3-60 mol.%) have been fully described in terms of vanadium local structure and Qn distributions. A fairly good agreement was found with experimental data further validating our computational models and providing a computational approach that could be used and extend to investigate in detail the structural information (V-V distances, V-O-V linkages and BO/NBO) directly correlated to macroscopic properties of application interest.

Full-text

Available from: Alfonso Pedone, Jun 15, 2015
2 Followers
 · 
126 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fluoride-containing bioactive glasses are attracting particular interest in many fields of dentistry and orthopedics because they combine the bone-bonding ability of bioactive glasses with the anticariogenic protection provided by fluoride ions. Since the biomedical applications of these materials critically depend on the release of ionic species in the surrounding physiological environment, a deep knowledge of their environments is required. In this paper, density functional theory calculations and spin effective Hamiltonians have been employed to analyse the NMR signatures of the various environments of 19F, 29Si, 31P and 23Na atoms in fluorinated bioglasses structural models previously generated by Car–Parrinello molecular dynamics simulations. Comparison with experimental spectra expressly recorded in this work shows a good agreement and allows the enlightenment of some longstanding issues about the atomic structure of fluorinated bioglasses, such as the presence of Si–F and Si–O–P bonds. In particular, it is shown that Si–F bonds cannot be resolved by using MAS NMR experiments only, and 29Si{19F} REDOR experiments, that probes directly spatial proximities among atoms, must be employed. Our results show that F is coordinated entirely to the modifier ions Na and Ca, and that no Si–F bonds are present in the real glass structure. Thus, the addition of fluorine to the 45S5 Bioglass® increases the polymerization of the silicate network by removing modifiers from the siliceous matrix and reducing its reactivity. Finally, the computed isotropic chemical shifts of the various environments of phosphorus show that, if present, Si–O–P bonds should be clearly noticeable in the 31P static NMR experimental spectrum. Instead, the latter show that P is present as isolated orthophosphate units and does not enter into the siliceous matrix by forming Si–O–P bonds as conjectured by molecular dynamics simulations.
    Journal of Materials Chemistry 06/2012; 22(25):12599-12608. DOI:10.1039/C2JM30890H · 6.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HfO2 is widely investigated as the favoured material for resistive RAM device implementation. The structural features of HfO2 play a fundamental role in the switching mechanisms governing resistive RAM operations, and a comprehensive understanding of the relation between the atomistic properties and final device behaviour is still missing. In addition, despite the fact that ultra-scaled 10 nm resistive RAM will probably be made of amorphous HfO2, a deeper investigation of the structure is necessary. In this paper, the classical molecular dynamics technique was used to investigate the disordered atomic configuration of amorphous HfO2. The influence of density on both the atomistic structure and the diffusion of O species was carefully analysed. The results achieved show that the atomistic structure of an amorphous HfO2 system is strongly affected by the density, and the amorphous system is rearranged in an atomic configuration similar to the crystalline configuration at similar densities. The diffusion of oxygen atoms increases with the decrease of the density, consistent with a less-packed atomic structure which allows for easier movement of this species.
    Modelling and Simulation in Materials Science and Engineering 07/2014; 22(6):065006. DOI:10.1088/0965-0393/22/6/065006 · 1.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Substantial research activity is currently invested in the pursuit of next generation cathode materials for rechargeable Li-ion batteries. We carry out an initial assessment of the suitability of a recently described empirical potential [ J. Phys. Chem. B 2006, 110, 11780] as a rapid, portable, and at least qualitatively accurate computational tool for screening large numbers of potential cathode materials for favorable Li-ion transport capabilities. Selected materials can then be examined more elaborately with more accurate but computationally more expensive first-principles approaches. As test systems for our initial assessment, we chose the group of phosphate olivines LiMPO4 (M = Mn, Fe, Co, Ni), promising candidates for next generation cathode materials and subject of numerous experimental and computational studies. To conduct the assessment, we determined the ground state structures of LiMPO4 from geometry optimizations with this empirical potential and with density functional theory (DFT) and computed activation barriers of Li-ion diffusion in LiMPO4 from molecular dynamics simulations based on the empirical potential and from minimum-energy-path DFT calculations. We show that structural results generated by the empirical potential are in good agreement with the DFT and experimental results and that barrier results produced by this potential are in good agreement with the DFT results and often in better agreement than values generated by custom parametrized empirical potentials.
    The Journal of Physical Chemistry C 05/2014; 118(21):11203–11214. DOI:10.1021/jp5004402 · 4.84 Impact Factor