Physicochemical characterization and structural evaluation of a specific 2:1 cocrystal of naproxen-nicotinamide.

Innovative Drug Discovery Research Laboratories, Shionogi & Company, Ltd., Toyonaka-shi, Osaka 561-0825, Japan.
Journal of Pharmaceutical Sciences (Impact Factor: 3.13). 04/2012; 101(9):3214-21. DOI: 10.1002/jps.23158
Source: PubMed

ABSTRACT Physicochemical characterization and structural evaluation of a 2:1 naproxen-nicotinamide cocrystal were performed. The 2:1 cocrystal showed rapid naproxen dissolution and less water vapor adsorption, indicating better pharmaceutical properties of naproxen. The unique 2:1 cocrystal formation was evaluated by solid-state nuclear magnetic resonance (NMR). The assignments of all H and (13) C peaks for naproxen and the cocrystal were performed using dipolar-insensitive nuclei enhanced by polarization transfer and (1) H-(13) C cross-polarization (CP)-heteronuclear correlation (HETCOR) NMR measurements. The (13) C chemical shift revealed that two naproxen molecules and one nicotinamide molecule existed in the asymmetric unit of the cocrystal. The (1) H chemical shifts indicated that the carboxylic group of the naproxen in the cocrystal was nonionized, and the CH-π interaction between naproxens was very strong. From the (1) H-(13) C CP-HETCOR NMR spectrum with contact time of 5 ms, two different synthons, carboxylic acid-amide and carboxylic acid-pyridine ring, were found between naproxen and nicotinamide. Single-crystal X-ray analysis, which supported the solid-state NMR results, clarified the geometry and intermolecular interactions in more detail. The structure is unique among pharmaceutical cocrystals because each carboxyl group of the two naproxens formed different intermolecular synthons.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The most abundant polyphenol in green tea, epigallocatechin-3-gallate (EGCg), has recently received considerable attention due to the discovery of numerous health-promoting bioactivities. Despite reports of its poor oral bioavailability, EGCg has been included in many dietary supplement formulations. Conventional preformulation methods have been employed to improve the bioavailability of EGCg. However, these methods have limitations that hinder the development of EGCg as an effective therapeutic agent. In this study, we have utilized the basic concepts of crystal engineering and several crystallization techniques to screen for various solid crystalline forms of EGCg and evaluated the efficacy of crystal engineering for modulating the pharmacokinetics of EGCg. We synthesized and characterized seven previously undescribed crystal forms of EGCg including the pure crystal structure of EGCg. The aqueous solubility profiles of four new EGCg cocrystals were determined. These cocrystals were subsequently dosed at 100 mg EGCg per kg body weight in rats and the plasma levels were monitored over the course of eight hours following the single oral dose. Two of the EGCg cocrystals were found to exhibit modest improvements in relative bioavailability. Further, cocrystallization resulted in marked effects on pharmacokinetic parameters including CMAX, TMAX, area under curve, relative bioavailability, and apparent terminal half-life. Our findings suggest that modulation of the pharmacokinetic profile of EGCg is possible using cocrystallization and that it offers certain opportunities that could be useful during its development as a therapeutic agent.
    Molecular Pharmaceutics 06/2013; · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: To understand the transformation pathways amongst anhydrate/hydrate solid forms of sodium naproxen and to highlight the importance of a polymorphic dihydrate within this context. METHODS: Multi-temperature dynamic vapour sorption (DVS) analysis combined with variable-humidity X-ray powder diffraction (XRPD) to establish the transformation pathways as a function of temperature and humidity. XRPD and thermogravimetric analysis (TGA) to characterise bulk samples. Monitoring of in-situ dehydration using solid-state (13)C CP/MAS spectroscopy. RESULTS: At 25°C, anhydrous sodium naproxen (AH) transforms directly to one dihydrate polymorph (DH-II). At 50°C, AH transforms stepwise to a monohydrate (MH) then to the other dihydrate polymorph (DH-I). DH-II transforms to a tetrahydrate (TH) more readily than DH-I transforms to TH. Both dihydrate polymorphs transform to the same MH. CONCLUSIONS: The properties of the polymorphic dihydrate control the transformation pathways of sodium naproxen.
    Pharmaceutical Research 09/2012; · 4.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acemetacin (ACM) is a non-steroidal anti-inflammatory drug (NSAID), which causes reduced gastric damage compared to indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing. With the objective to discover a solid form of acemetacin that is stable in the aqueous medium, binary adducts were prepared by the melt method to avoid hydration. The coformers/salt formers reported are pyridine carboxamides (nicotinamide (NAM), isonicotinamide (INA), and picolinamide (PAM)), caprolactam (CPR), p-aminobenzoic acid (PABA), and piperazine (PPZ). The structures of an ACM-INA cocrystal and a binary adduct ACM-PABA were solved using single-crystal X-ray diffraction. Other ACM cocrystals, ACM-PAM and ACM-CPR, and the piperazine salt ACM-PPZ were solved from high-resolution powder X-ray diffraction data. The ACM-INA cocrystal is sustained by the acid•••pyridine heterosynthon and N–H•••O catemer hydrogen bonds involving the amide group. The acid•••amide heterosynthon is present in the ACM-PAM cocrystal, while ACM-CPR contains carboxamide dimers of caprolactam along with acid–carbonyl (ACM) hydrogen bonds. The cocrystals ACM-INA, ACM-PAM and ACM-CPR are 3D isostructural. The carboxyl•••carboxyl synthon in ACM-PABA posed difficulty in assigning the position of the H atom, which may indicate proton disorder. In terms of stability, the salts were found to be relatively stable in pH 7 buffer medium over 24 h, but the cocrystals dissociated to give ACM hydrate during the same time period. The ACM-PPZ salt and ACM-nicotinamide cocrystal dissolve 5 times faster than the stable hydrate form, whereas the ACM-PABA adduct has 2.5 times faster dissolution rate. The pharmaceutically acceptable piperazine salt of acemetacin exhibits superior stability, faster dissolution rate, and is able to overcome the hydration tendency of the reference drug.
    IUCrJ. 03/2014;