Article

Mechanisms of gene regulation by fatty acids.

Nutrition, Metabolism and Genomics Group, Wageningen University, the Netherlands.
Advances in Nutrition (Impact Factor: 3.2). 01/2012; 3(2):127-34. DOI: 10.3945/an.111.001602
Source: PubMed

ABSTRACT Consumption of specific dietary fatty acids has been shown to influence risk and progression of several chronic diseases, such as cardiovascular disease, obesity, cancer, and arthritis. In recent years, insights into the mechanisms underlying the biological effects of fatty acids have improved considerably and have provided the foundation for the emerging concept of fatty acid sensing, which can be interpreted as the property of fatty acids to influence biological processes by serving as signaling molecules. An important mechanism of fatty acid sensing is via stimulation or inhibition of DNA transcription. Here, we focus on fatty acid sensing via regulation of gene transcription and address the role of peroxisome proliferator-activated receptors, sterol regulatory element binding protein 1, Toll-like receptor 4, G protein-coupled receptors, and other putative mediators.

0 Bookmarks
 · 
168 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Zearalenone (ZEA), a Fusarium mycotoxin that contaminates cereal crops worldwide, has been shown to affect the male reproductive system and trigger reactive oxygen species (ROS) generation. However, the mechanisms of its toxicity have not been fully understood. Because mitochondrion is a key organelle involved in producing ROS and generating metabolic intermediates for biosynthesis, an iTRAQ-based mitoproteomics approach was employed to identify the molecular mechanism of zearalenone toxicity using mitochondria of mouse Leydig tumor cells (MLTC-1). A total of 2014 nonredundant proteins were identified, among which 1401 proteins (69.56%) were overlapped. There were 52 differentially expressed proteins in response to ZEA, and they were primarily involved in energy metabolism, molecular transport and endocrine-related functions. Consistent with mitochondrial proteomic analysis, the ATP and intracellular Ca2+ levels increased after ZEA treatment. The results suggest that lipid metabolism changed significantly after low-dose ZEA exposure, resulting in two alterations. One is the increase in energy production through promoted fatty acid uptake and β-oxidation, along with excessive oxidative stress; the other is an inhibition of steroidogenesis and esterification, possibly resulting in reduced hormone secretion. A hypothetical model of ZEA-induced mitochondrial damage is proposed to provide a framework for the mechanism of ZEA toxicity.
    Toxicology 10/2014; · 4.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular targeted therapy has been developed for cancer chemoprevention and treatment. Cancer cells process a fundamental change in its bioenergetic metabolism from normal cells on an altered lipid metabolism, also known as the de novo fatty acid synthesis, for sustaining their high proliferation rates. Fatty acid synthesis is now associated with clinically aggressive tumor behavior and tumor cell growth and has become a novel target pathway for chemotherapy development. Although the underlying mechanisms of the altered de novo fatty acid synthesis still remains unclear, recent progress has shown that by targeting Fatty acid synthase (FASN), a key enzyme that catalyzes the synthesis of endogenous long chain fatty acid could be a critical target for drug discovery. However, relatively few FASN inhibitors have been discovered. With the long history of clinical practices and numerous histological case study reports, traditional Chinese medicine enjoys an important role in seeking bioactive anticancer natural compounds. Herein, we will give an overall picture of the current progress of molecular targeted therapy in cancer fatty acid synthesis, describe the advances in the research on natural products-derived FASN inhibitors and their potential for enhancing our understanding of fatty acids in tumor biology, and may provide new therapeutic moieties for breast cancer patient care.
    Evidence-based Complementary and Alternative Medicine 01/2014; 2014:232946. · 1.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer (BC) is the most common cancer among women worldwide. Dietary fatty acids, especially n-3 polyunsaturated fatty acids (PUFA), are believed to play a role in reducing BC risk. Evidence has shown that fish consumption or intake of long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial for inhibiting mammary carcinogenesis. The evidence regarding α-linolenic acid (ALA), however, remains equivocal. It is essential to clarify the relation between ALA and cancer since ALA is the principal source of n-3 PUFA in the Western diet and the conversion of ALA to EPA and DHA is not efficient in humans. In addition, the specific anticancer roles of individual n-3 PUFA, alone, have not yet been identified. Therefore, the present review evaluates ALA, EPA and DHA consumed individually as well as in n-3 PUFA mixtures. Also, their role in the prevention of BC and potential anticancer mechanisms of action are examined. Overall, this review suggests that each n-3 PUFA has promising anticancer effects and warrants further research.
    Nutrients 01/2014; 6(11):5184-5223. · 3.15 Impact Factor

Full-text (2 Sources)

Download
29 Downloads
Available from
Jun 4, 2014