Article

Transport of silver nanoparticles (AgNPs) in soil.

Dept. of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, Israel.
Chemosphere (Impact Factor: 3.14). 04/2012; 88(5):670-5. DOI: 10.1016/j.chemosphere.2012.03.055
Source: PubMed

ABSTRACT The effect of soil properties on the transport of silver nanoparticles (AgNPs) was studied in a set of laboratory column experiments, using different combinations of size fractions of a Mediterranean sandy clay soil. The AgNPs with average size of ~30nm yielded a stable suspension in water with zeta potential of -39mV. Early breakthrough of AgNPs in soil was observed in column transport experiments. AgNPs were found to have high mobility in soil with outlet relative concentrations ranging from 30% to 70%, depending on experimental conditions. AgNP mobility through the column decreased when the fraction of smaller soil aggregates was larger. The early breakthrough pattern was not observed for AgNPs in pure quartz columns nor for bromide tracer in soil columns, suggesting that early breakthrough is related to the nature of AgNP transport in natural soils. Micro-CT and image analysis used to investigate structural features of the soil, suggest that soil aggregate size strongly affects AgNP transport in natural soil. The retention of AgNPs in the soil column was reduced when humic acid was added to the leaching solution, while a lower flow rate (Darcy velocity of 0.17cm/min versus 0.66cm/min) resulted in higher retention of AgNPs in the soil. When soil residual chloride was exchanged by nitrate prior to column experiments, significantly improved mobility of AgNPs was observed in the soil column. These findings point to the importance of AgNP-soil chemical interactions as a retention mechanism, and demonstrate the need to employ natural soils rather than glass beads or quartz in representative experimental investigations.

1 Bookmark
 · 
193 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, there has been increasing concern regarding the fate and transport of engineered nanoparticles (NPs) in environmental systems and the potential impacts on human and environmental health due to the exponential increase in commercial and industrial use worldwide. To date, there have been relatively few field-scale studies or laboratory-based studies on environmentally relevant soils examining the chemical/physical behavior of the NPs following release into natural systems. The objective of this research is to demonstrate the behavior and transformations of iron oxide and silver NPs with different capping ligands within the unsaturated zone. Here, we show that NP transport within the vadose zone is minimal primarily due to heteroaggregation with soil surface coatings with results that >99 % of the NPs remained within 5 cm of the original source after 1 year in intermediate-scale field lysimeters. These results suggest that transport may be overestimated when compared to previous laboratory-scale studies on pristine soils and pure minerals and that future work must incorporate more environmentally relevant parameters.
    Journal of Nanoparticle Research 02/2014; 16(2). · 2.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: a b s t r a c t We investigated the effects of silver nanomaterials (AgNMs) on five well-characterized soils with distinct physicochemical properties using two standardized test systems. The carbon transformation test (OECD 217) showed minimal sensitivity whereas the ammonia oxidizing bacteria test (ISO 15685) showed extreme sensitivity over 28 days of exposure. AgNM toxicity was compared with the physicochemical properties of the soils, revealing that toxicity declined with increasing clay content and increasing pH. AgNM toxicity did not appear to be affected by the organic carbon content of the soil. Our results showed that AgNM toxicity cannot be attributed to any single soil property but depends on the same parameters that determine the toxicity of conventional chemicals. Recommendations in the test guidelines for soil ecotoxicity studies are therefore applicable to AgNMs as well as conventional chemicals. article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
    Environmental Pollution 01/2015; 196:321 - 330. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The extensive use of silver nanoparticles (SNPs) as antimicrobial in food, clothing and medicine, leads inevitably to a loss of such nanomaterial in soil and water. Little is known about the effects of soil contamination, in particular, on microbial cells, which play a fundamental ecological role. In this work, the impact of SNPs on forest soil has been studied, investigating eco-physiological indicators of microbial biomass and microbial diversity with culture-dependent and independent techniques. Moreover, SNPs bioavailability and uptake were assessed. Soil samples were spiked with SNPs at two different concentrations (10 and 100 μg g−1 dw) and incubated with the relative controls for 30, 60 and 90 days. The overall parameters showed a significant influence of the SNPs on the soil microbial community, revealing a marked shift after 60 days of incubation.
    Journal of Hazardous Materials 09/2014; 280:89–96. · 4.33 Impact Factor