Emerging roles for modulation of microRNA signatures in cancer chemoprevention.

Amrita Institute of Medical Sciences and Research Centre, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham University, Kerala, India.
Current cancer drug targets (Impact Factor: 5.13). 04/2012; 12(6):716-40. DOI: 10.2174/156800912801784875
Source: PubMed

ABSTRACT miRNAs are small endogenous non-coding RNAs, approximately 21-nucleotides in length, which are shown to regulate an array of cellular processes such as differentiation, cell cycle, cell proliferation, apoptosis, and angiogenesis which are important in cancer. miRNAs can function as both tumor promoters (oncomiRs) or tumor suppressors by their ability to target numerous biomolecules that are important in carcinogenesis. Aberrant expression of miRNAs is correlated with the development and progression of tumors, and the reversal of their expression has been shown to modulate the cancer phenotype suggesting the potential of miRNAs as targets for anti-cancer drugs. Several chemopreventive phytochemicals like epigallocatechin-3-gallate, curcumin, isoflavones, indole-3-carbinol, resveratrol, and isothiocyanate have been shown to modulate the expression of numerous miRNAs in cancer cells that lead to either abrogation of tumor growth or sensitization of cancer cells to chemotherapeutic agents. This review focuses on the putative role(s) of miRNAs in different aspects of tumorigenesis and at various stages of early drug discovery that makes them a promising class of drug targets for chemopreventive intervention in cancer. We summarize the current progress in the development of strategies for miRNA-based anti-cancer therapies. We also explore the modulation of miRNAs by various cancer chemopreventive agents and the role of miRNAs in drug metabolism. We will discuss the role of miRNAs in cancer stem cells and epithelial-to-mesenchymal transition; and talk about how modulation of miRNA expression relates to altered glycosylation patterns in cancer cells. In addition, we consider the role of altered miRNA expression in carcinogenesis induced by various agents including genotoxic and epigenetic carcinogens. Finally, we will end with a discussion on the potential involvement of miRNAs in the development of cancer chemoresistance. Taken together, a better understanding of the complex role(s) of miRNAs in cancer may help in designing better strategies for biomarker discovery or drug targeting of miRNAs and/or their putative protein targets.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective To analyze expression heterogeneity of Integrin beta 3 (ITGB3) and B-cell lymphoma 2 (BCL-2) in lung adenocarcinoma tissue and adenocarcinoma cell line and further provide theoretical direction for molecular biological research of lung adenocarcinoma. Methods Tissue microarray was used to observe relation among expression, heterogeneitpy and clinical characteristics of ITGB3 and BCL-2 in lung cancer. Results ITGB3 and BCL-2 increased significantly in A549 cells in CAFs group withβ-actin as control; the expression level of BCL-2 also increased in ITGB3 transfected cells with GFP plasmid transfected A549 cells as control; immunohistochemistry staining showed that positive rates of ITGB3, ITGB1 and BCL-2 in normal lung tissues were 0, the positive rates in lung adenocarcinoma were 7.04%, 84.51% and 4.23%, respectively; in the results of immunohistochemistry staining, the expression of Girdin protein in lung adenocarcinoma was homogeneous, however protein expression of ITGB3, ITGB1 and BCL-2 showed different patterns in the same location with significant heterogeneity; majority of ITGB3, ITGB1 or BCL-2 positive tissue showed heterogeneity that expression in trailing edge was higher than that of trailing edge in lung adenocarcinoma tissue, the patients with BCL-2 heterogeneity showed higher lymph node metastasis ratio and lower clinical stage (P<0.05); and the expression of ITGB3 and the clinical characteristics of patients were not significant related (P>0.05). Conclusions Expression of ITGB3 and BCL-2 in lung adenocarcinoma and adenocarcinoma cell line showed heterogeneity that expression in trailing edge was higher than that of trailing edge, which may play an important role in promoting tumor lymph node metastasis and vascular invasion, and provides a new research direction for exploration of lung adenocarcinoma metastasis mechanism.
    Asian Pacific Journal of Tropical Medicine 06/2014; 7(6):473–477. · 0.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNA) have been implicated in the resistance of tumors to chemotherapy. However, little is known about miRNA expression in bromocriptine-resistant prolactinomas. In this study, twenty-three prolactinoma samples were classified as bromocriptine-sensitive or -resistant according to the clinical definition of bromocriptine resistance, and their miRNA expression profiles were determined using Solexa sequencing. We found 41 miRNAs that were differentially expressed between the two groups, and 12 of these were validated by stem-loop qRT-PCR. Hsa-mir-93, hsa-mir-17, hsa-mir-22*, hsa-mir-126*, hsa-mir-142-3p, hsa-mir-144*, hsa-mir-486-5p, hsa-mir-451, and hsa-mir-92a were up-regulated and hsa-mir-30a, hsa-mir-382, and hsa-mir-136 were down-regulated in bromocriptine-resistant prolactinomas in comparison with bromocriptine-sensitive prolactinomas. Furthermore, silencing of mir-93 significantly increased the sensitivity of MMQ cells to dopamine agonist treatment. Mir-93 directly affected p21 expression in MMQ cells by targeting the 3'-UTR. Our study is the first to identify a miRNA expression profile associated with bromocriptine-resistant prolactinoma.
    Molecular and Cellular Endocrinology 07/2014; · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Excessive oxidative stress induced by reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive metabolites of carcinogens alters cellular homeostasis, leading to genetic/epigenetic changes, genomic instability, neoplastic transformation, and cancer initiation/progression. As a protective mechanism against oxidative stress, antioxidant/detoxifying enzymes reduce these reactive species and protect normal cells from endo-/exogenous oxidative damage. The transcription factor nuclear factor-erythroid 2 p45 (NF-E2)-related factor 2 (Nrf2), a master regulator of the antioxidative stress response, plays a critical role in the expression of many cytoprotective enzymes, including NAD(P)H:quinine oxidoreductase (NQO1), heme oxygenase-1 (HO-1), UDP-glucuronosyltransferase (UGT), and glutathione S-transferase (GST). Recent studies demonstrated that many dietary phytochemicals derived from various vegetables, fruits, spices, and herbal medicines induce Nrf2-mediated antioxidant/detoxifying enzymes, restore aberrant epigenetic alterations, and eliminate cancer stem cells (CSCs). The Nrf2-mediated antioxidant response prevents many age-related diseases, including cancer. Owing to their fundamental contribution to carcinogenesis, epigenetic modifications and CSCs are novel targets of dietary phytochemicals and traditional Chinese herbal medicine (TCHM). In this review, we summarize cancer chemoprevention by dietary phytochemicals, including TCHM, which have great potential as a safer and more effective strategy for preventing cancer.
    Journal of traditional and complementary medicine. 01/2013; 3(1):69-79.