A Genetic Risk Variant for Myocardial Infarction on Chromosome 6p24 Is Associated With Impaired Central Hemodynamic Indexes

Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
American Journal of Hypertension (Impact Factor: 2.85). 04/2012; 25(7):797-803. DOI: 10.1038/ajh.2012.41
Source: PubMed


Genome-wide association studies (GWAS) have identified novel variants associated with myocardial infarction (MI) in Caucasians. We hypothesized that those variants whose mechanism of risk is currently unknown, confer risk via pathways mediating arterial wave reflections which is an increasingly recognized risk factor for cardiovascular disease.
Single-nucleotide polymorphisms (SNPs) at eight MI risk loci were genotyped and correlated with noninvasively determined pulse wave analysis (PWA)-derived central hemodynamic indexes (augmentation index (AIx); augmented pressure (AP); time to reflected wave (TrW) and central systolic blood pressure (SBP) and diastolic BP (DBP)) in two independent Caucasian populations including (i) those free of measured cardiovascular risk factors (n = 133) and (ii) a community-based population (n = 270).
Of the eight SNPs examined in the healthy group, the variants at loci 6p24 (AIx and AP both P < 0.001, TrW P = 0.02) and 21q22 (AIx P = 0.002, TrW P = 0.037) were significantly associated with PWA indexes. In the replication group, only the 6p24 variant correlated with these phenotypes (AIx P = 0.005, AP P = 0.049, TrW P = 0.013). In the pooled population (n = 403), no new associations were identified but the association with 6p24 and AIx remained significant even after Bonferroni correction and adjustment for covariates including age, mean arterial pressure, height, gender, glucose, cholesterol, body mass index (BMI), and smoking (AIx (P = 0.03)). Each copy of the risk allele C increased the AIx by 3.5%.
The GWAS discovered MI risk variant at 6p24 in the protein phosphatase 1 regulator gene (PHACTR1) is associated with adverse arterial wave reflection indexes and may mediate MI risk through this pathway.

8 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although various genes that confer susceptibility to myocardial infarction (MI) have been identified for Caucasian populations in genome-wide association studies (GWAS), genetic variants related to this condition in Japanese individuals have not been identified definitively. The aim of the present study was to examine an association of MI in Japanese individuals with 29 polymorphisms identified as susceptibility loci for MI or coronary artery disease in Caucasian populations by meta-analyses of GWAS. The study subjects comprised 1,824 subjects with MI and 2,329 controls. Genotypes of the polymorphisms were determined by Luminex bead-based multiplex assay. To compensate for multiple comparisons, we adopted the criterion of a false discovery rate (FDR) of <0.05 for statistical significance for association. Comparisons of allele frequencies by the χ2 test revealed that rs9369640 of the phosphatase and actin regulator 1 gene (PHACTR1, FDR=0.0007), rs4977574 of the CDKN2B antisense RNA 1 gene (CDKN2B-AS1, FDR=0.0038), rs264 of the lipoprotein lipase gene (LPL, FDR=0.0061), rs599839 of the proline/serine-rich coiled-coil 1 gene (PSRC1, FDR=0.0118), rs9319428 of the fms-related tyrosine kinase 1 gene (FLT1, FDR=0.0118) and rs12413409 of the cyclin and CBS domain divalent metal cation transport mediator 2 gene (CNNM2, FDR=0.0300) were significantly associated with MI. Multivariate logistic regression analysis with adjustment for covariates revealed that rs9369640 (P=0.0005; odds ratio, 0.89), rs4977574 (P=0.0001; odds ratio, 1.50), rs264 (P=0.0405; odds ratio, 0.85), rs599839 (P=0.0003; odds ratio, 0.68), rs9319428 (P=0.0155; odds ratio, 1.20) and rs12413409 (P=0.0076; odds ratio, 0.66) were significantly (P<0.05) associated with MI. PHACTR1, CDKN2B-AS1, LPL, PSRC1, FLT1 and CNNM2 may thus be susceptibility loci for MI in Japanese individuals.
    International Journal of Molecular Medicine 02/2015; 35(5). DOI:10.3892/ijmm.2015.2115 · 2.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coronary artery disease (CAD), including myocardial infarction (MI), is the main cause of death in the world. Genome-wide association studies have identified dozens of single nucleotide polymorphisms (SNPs) associated with CAD/MI. One of the most robust CAD/MI genetic associations is with intronic SNPs in the gene PHACTR1 on chromosome 6p24. How these PHACTR1 SNPs influence CAD/MI risk, and whether PHACTR1 itself is the causal gene at the locus, is currently unknown. Using genetic fine-mapping and DNA resequencing experiments, we prioritized an intronic SNP (rs9349379) in PHACTR1 as causal variant. We showed that this variant is an expression quantitative trait locus for PHACTR1 expression in human coronary arteries. Experiments in endothelial cell extracts confirmed that alleles at rs9349379 are differentially bound by the transcription factors myocyte enhancer factor-2. We engineered a deletion of this myocyte enhancer factor-2-binding site using CRISPR/Cas9 genome-editing methodology. Heterozygous endothelial cells carrying this deletion express 35% less PHACTR1. Finally, we found no evidence that PHACTR1 expression levels are induced when stimulating human endothelial cells with vascular endothelial growth factor, tumor necrosis factor-α, or shear stress. Our results establish a link between intronic SNPs in PHACTR1, myocyte enhancer factor-2 binding, and transcriptional functions at the locus, PHACTR1 expression levels in coronary arteries and CAD/MI risk. Because PHACTR1 SNPs are not associated with the traditional risk factors for CAD/MI (eg, blood lipids or pressure, diabetes mellitus), our results suggest that PHACTR1 may influence CAD/MI risk through as yet unknown mechanisms in the vascular endothelium. © 2015 American Heart Association, Inc.
    Arteriosclerosis Thrombosis and Vascular Biology 04/2015; 35(6). DOI:10.1161/ATVBAHA.115.305534 · 6.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Coronary artery disease (CAD) and ischemic stroke are important clinical problems because they are associated with high mortality rates. The main causal and treatable risk factors of CAD and ischemic stroke include hypertension, dyslipidemia, diabetes mellitus, chronic kidney disease, and smoking. In addition, recent studies have highlighted the importance of genetic factors and their interactions with environmental factors in the development of CAD and ischemic stroke. Disease prevention is an important strategy for reducing the overall burden of CAD and ischemic stroke, and identification of markers of disease risk can help in risk prediction and the use of accurate interventions can help decrease the risk of these events. Although genetic linkage analyses and candidate gene association studies have implicated several loci and candidate genes in predisposition to CAD or ischemic stroke, these loci and genes have not been identified definitively. Recent genome-wide association studies (GWASs) have shown that single nucleotide polymorphisms in chromosome 9p21.3 locus and other loci are associated with CAD or ischemic stroke. In this review, I have summarized the genetics of CAD and ischemic stroke and have identified susceptibility genes and loci implicated in these conditions based on the results of GWASs. In addition, I have reviewed GWASs highlighting the association of polymorphisms in the chromosome 9p21.3 locus or other loci with CAD or ischemic stroke. The results of these studies may provide insights into the functions of the implicated genes in the development of CAD and ischemic stroke.
    04/2015; 4. DOI:10.1016/j.pmu.2015.03.002