Temporal profile of molecular signatures associated with circulating endothelial progenitor cells in human ischemic stroke.

Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.
Journal of Neuroscience Research (Impact Factor: 2.97). 04/2012; 90(9):1788-93. DOI: 10.1002/jnr.23068
Source: PubMed

ABSTRACT Endothelial progenitor cells (EPC) have been associated with good functional outcome in ischemic stroke. From preclinical studies, it has been reported that EPC proliferation is mediated by several molecular markers, including vascular endothelial growth factor (VEGF), stromal cell-derived factor-1α (SDF-1α), and the activity of matrix metalloproteinase-9 (MMP-9). Therefore, our aim was to study the role of these molecular factors in EPC proliferation in human ischemic stroke. Forty-eight patients with first episode of nonlacunar ischemic stroke were prospectively included in the study within 12 hr of symptom onset. EPC colonies were classified as early-outgrowth colony forming unit-endothelial cell (CFU-EC) and quantified at admission, at 24 and 72 hr, at day 7, and at 3 months. At the same time, serum levels of VEGF, SDF-1α, and active MMP-9 were measured by ELISA. The primary endpoint was EPC increment during the first week, which was defined as the difference in the number of CFU-EC between day 7 and admission. We found that VEGF (r = 0.782), SDF-1α (r = 0.828), and active MMP-9 (r = 0.740) levels at 24 hr from stroke onset showed a strong correlation with EPC increment. Similar results were found for VEGF levels at 72 hr (r = 0.839) and at day 7 (r = 0.602) as well as for active MMP-9 levels at 72 hr (r = 0.442) and at day 7 (r = 0.474). In the multivariate analyses, serum levels of VEGF at 72 hr (B: 0.074, P < 0.0001) and SDF-1α at 24 hr (B: 0.049, P = 0.008) were independent factors for EPC increment during the first week of evolution. These findings suggest that VEGF and SDF-1α may mediate EPC proliferation in human ischemic stroke.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here, we report that a unique mechanism of action exerted by stem cells in the repair of the traumatically injured brain involves their ability to harness a biobridge between neurogenic niche and injured brain site. This biobridge, visualized immunohistochemically and laser captured, corresponded to an area between the neurogenic subventricular zone and the injured cortex. That the biobridge expressed high levels of extracellular matrix metalloproteinases characterized initially by a stream of transplanted stem cells, but subsequently contained only few to non-detectable grafts and overgrown by newly formed host cells, implicates a novel property of stem cells. The transplanted stem cells manifest themselves as pathways for trafficking the migration of host neurogenic cells, but once this biobridge is formed between the neurogenic site and the injured brain site, the grafted cells disappear and relinquish their task to the host neurogenic cells. Our findings reveal that long-distance migration of host cells from the neurogenic niche to the injured brain site can be achieved through transplanted stem cells serving as biobridges for initiation of endogenous repair mechanisms. This is the first report of a stem cell-paved "biobridge". Indeed, to date the two major schools of discipline in stem cell repair mechanism primarily support the concept of "cell replacement" and bystander effects of "trophic factor secretion". The present novel observations of a stem cell seducing a host cell to engage in brain repair advances basic science concepts on stem cell biology and extracellular matrix, as well as provokes translational research on propagating this stem cell-paved biobridge beyond cell replacement and trophic factor secretion for the treatment of traumatic brain injury and other neurological disorders.
    PLoS ONE 01/2013; 8(9):e74857. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vascular endothelial growth factors (VEGFs) have been shown to participate in atherosclerosis, arteriogenesis, cerebral edema, neuroprotection, neurogenesis, angiogenesis, postischemic brain and vessel repair, and the effects of transplanted stem cells in experimental stroke. Most of these actions involve VEGF-A and the VEGFR-2 receptor, but VEGF-B, placental growth factor, and VEGFR-1 have been implicated in some cases as well. VEGF signaling pathways represent important potential targets for the acute and chronic treatment of stroke.
    Cellular and Molecular Life Sciences CMLS 03/2013; · 5.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The levels of circulating endothelial progenitor cells (EPCs) in ischemic stroke have not been studied extensively and reported results are inconsistent. We aimed to investigate the time course, the prognostic relevance, and the variables associated with EPC counts in patients with ischemic stroke at different time points. We studied prospectively 146 consecutive patients with ischemic stroke within the first 48 h from the onset of symptoms (baseline). We evaluated demographic data, classical vascular risk factors, treatment with thrombolysis and statins, stroke etiology, National Institute of Health and Stroke Scale score and outcome (favorable when Rankin scale score 0-2). Blood samples were collected at baseline, at day 7 after stroke (n = 121) and at 3 months (n = 92). The EPC were measured by flow cytometry. We included 146 patients with a mean age of 70.8 ± 12.2 years. The circulating EPC levels were higher on day 7 than at baseline or at 3 months (P = 0.045). Pretreatment with statins (odds ratio [OR] 3.11, P = 0.008) and stroke etiology (P = 0.032) were predictive of EPC counts in the baseline sample. EPC counts were not associated with stroke severity or functional outcome in all the patients. However, using multivariate analyses, a better functional outcome was found in patients with higher EPC counts in large-artery atherosclerosis and small-vessel disease etiologic subtypes. After acute ischemic stroke, circulating EPC counts peaked at day 7. Pretreatment with statins increased the levels of EPC. In patients with large-artery atherosclerosis and small-vessel disease subtypes, higher counts were related to better outcome at 3 months.
    Brain and behavior. 11/2013; 3(6):649-55.


Available from
May 21, 2014