Elements of Nucleotide Specificity in the Trypanosoma brucei Mitochondrial RNA Editing Enzyme RET2

Department of Chemistry and Biochemistry, University of California , San Diego, 3234 Urey Hall, 9500 Gilman Drive, MC-0340 La Jolla, California 92093-0332, USA.
Journal of Chemical Information and Modeling (Impact Factor: 3.74). 04/2012; 52(5):1308-18. DOI: 10.1021/ci3001327
Source: PubMed

ABSTRACT The causative agent of African sleeping sickness, Trypanosoma brucei , undergoes an unusual mitochondrial RNA editing process that is essential for its survival. RNA editing terminal uridylyl transferase 2 of T. brucei (TbRET2) is an indispensable component of the editosome machinery that performs this editing. TbRET2 is required to maintain the vitality of both the insect and bloodstream forms of the parasite, and with its high-resolution crystal structure, it poses as a promising pharmaceutical target. Neither the exclusive requirement of uridine 5'-triphosphate (UTP) for catalysis, nor the RNA primer preference of TbRET2 is well-understood. Using all-atom explicitly solvated molecular dynamics (MD) simulations, we investigated the effect of UTP binding on TbRET2 structure and dynamics, as well as the determinants governing TbRET2's exclusive UTP preference. Through our investigations of various nucleoside triphosphate substrates (NTPs), we show that UTP preorganizes the binding site through an extensive water-mediated H-bonding network, bringing Glu424 and Arg144 side chains to an optimum position for RNA primer binding. In contrast, cytosine 5'-triphosphate (CTP) and adenosine 5'-triphosphate (ATP) cannot achieve this preorganization and thus preclude productive RNA primer binding. Additionally, we have located ligand-binding "hot spots" of TbRET2 based on the MD conformational ensembles and computational fragment mapping. TbRET2 reveals different binding pockets in the apo and UTP-bound MD simulations, which could be targeted for inhibitor design.

Download full-text


Available from: Özlem Demir, Sep 28, 2015
14 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Trypanosomatids form a group of protozoa which contain parasites of human, animals and plants. Several of these species cause major human diseases, including Trypanosoma brucei which is the causative agent of human African trypanosomiasis, also called sleeping sickness. These organisms have many highly unusual features including a unique U-insertion/deletion RNA editing process in the single mitochondrion. A key multi-protein complex, called the ∼20S editosome, or editosome, carries out a cascade of essential RNA-modifying reactions and contains a core of 12 different proteins of which six are the interaction proteins A1 to A6. Each of these interaction proteins comprises a C-terminal OB-fold and the smallest interaction protein A6 has been shown to interact with four other editosome OB-folds. Here we report the results of a "linked OB-fold" approach to obtain a view of how multiple OB-folds might interact in the core of the editosome. Constructs with variants of linked domains in 25 expression and co-expression experiments resulted in 13 soluble multi-OB-fold complexes. In several instances, these complexes were more homogeneous in size than those obtained from corresponding unlinked OB-folds. The crystal structure of A3(OB) linked to A6 could be elucidated and confirmed the tight interaction between these two OB domains as seen also in our recent complex of A3(OB) and A6 with nanobodies. In the current crystal structure of A3(OB) linked to A6, hydrophobic side chains reside in well-defined pockets of neighboring OB-fold domains. When analyzing the available crystal structures of editosome OB-folds, it appears that in five instances "Pocket 1" of A1(OB), A3(OB) and A6 is occupied by a hydrophobic side chain from a neighboring protein. In these three different OB-folds, Pocket 1 is formed by two conserved sequence motifs and an invariant arginine. These pockets might play a key role in the assembly or mechanism of the editosome by interacting with hydrophobic side chains from other proteins.
    Journal of Structural Biology 08/2012; 180(2). DOI:10.1016/j.jsb.2012.07.012 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human African trypanosomiasis (HAT) is a major health problem in sub-Saharan Africa caused by Trypanosoma brucei infection. Current HAT drugs are difficult to administer and not effective against all parasite species at different stages of the disease which indicates an unmet pharmaceutical need. TbRET2 is an indispensable enzyme for the parasite and is targeted here using a computational approach that combines molecular dynamics simulations and virtual screening. The compounds prioritized are then tested in T. brucei via Alamar blue cell viability assays. This work identified 20 drug-like compounds which are candidates for further testing in the drug discovery process.
    Chemical Biology &amp Drug Design 02/2014; 84(2). DOI:10.1111/cbdd.12302 · 2.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Analysis of macromolecular/small-molecule binding pockets can provide important insights into molecular recognition and receptor dynamics. Since its release in 2011, the POVME (POcket Volume MEasurer) algorithm has been widely adopted as a simple-to-use tool for measuring and characterizing pocket volumes and shapes. We here present POVME 2.0, which is an order of magnitude faster, has improved accuracy, includes a graphical user interface, and can produce volumetric density maps for improved pocket analysis. To demonstrate the utility of the algorithm, we use it to analyze the binding pocket of RNA editing ligase 1 from the unicellular parasite Trypanosoma brucei, the etiological agent of African sleeping sickness. The POVME analysis characterizes the full dynamics of a potentially druggable transient binding pocket and so may guide future antitrypanosomal drug-discovery efforts. We are hopeful that this new version will be a useful tool for the computational- and medicinal-chemist community.
    Journal of Chemical Theory and Computation 11/2014; 10(11):5047-5056. DOI:10.1021/ct500381c · 5.50 Impact Factor