Conference Paper

Rao-Blackwellized Particle Filtering for Mapping Dynamic Environments

Sibley Sch. of Mech. & Aerosp. Eng., Cornell Univ., Ithaca, NY
DOI: 10.1109/ROBOT.2007.364071 Conference: Robotics and Automation, 2007 IEEE International Conference on
Source: IEEE Xplore

ABSTRACT A general method for mapping dynamic environments using a Rao-Blackwellized particle filter is presented. The algorithm rigorously addresses both data association and target tracking in a single unified estimator. The algorithm relies on a Bayesian factorization to separate the posterior into: 1) a data association problem solved via particle filter; and 2) a tracking problem with known data associations solved by Kalman filters developed specifically for the ground robot environment. The algorithm is demonstrated in simulation and validated in the real world with laser range data, showing its practical applicability in simultaneously resolving data association ambiguities and tracking moving objects.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Simultaneous localization and consistent mapping in dynamic environments is a fundamental and unsolved problem in the mobile robotics community. Most of the algorithms for this problem heavily rely on discriminating dynamic objects from static objects. Because these recursive filters based discrimination algorithms always have lag before the model selection parameters converge to the steady states, they have a period of time that the filter could identify a dynamic target as static or vice versa. Mis-classifications decrease precision and consistence, and induce filter divergence.A brain interacts with dynamic environments. The biological basis of this adaptability is provided by the connectivity and the dynamic properties of neurons. Biologically inspired by the adaptability, the paper proposes a shunting STM (Short Term Memory) based method to solve the simultaneous localization and consistent mapping problem, especially in dynamic environments. The proposed method utilizes a shunting STM neural network to represent environments and to probabilistically reflect the probability of existence of an object; it adapts a scan matching scheme to localize robot based on the map representation. Dynamic properties of the neural network are used to reflect environmental changes, therefore, the proposed method does not require explicit discrimination of objects. As a result, the proposed method does not have the lag of convergence, and it has high utilization ratio of observation information. Theoretical analyses in the paper show the proposed method has Lyapunov stability and its computational complexity does not depend on the size of the environment. The paper compares the proposed method with the classification based Extend Kalman Filter on a classical outdoor dataset, in simulated environments and in real indoor environments. The results show the proposed method outperforms the classification based EKF on precision and consistence in both static environments and dynamic environments.
    Neurocomputing 03/2013; 104:170–179. DOI:10.1016/j.neucom.2012.10.011 · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Team Cornell's Skynet is an autonomous Chevrolet Tahoe built to compete in the 2007 DARPA Urban Challenge. Skynet consists of many unique subsystems, including actuation and power distribution designed in-house, a tightly coupled attitude and position estimator, a novel obstacle detection and tracking system, a system for augmenting position estimates with vision-based detection algorithms, a path planner based on physical vehicle constraints and a nonlinear optimization routine, and a state-based reasoning agent for obeying traffic laws. This paper describes these subsystems in detail before discussing the system's overall performance in the National Qualifying Event and the Urban Challenge. Logged data recorded at the National Qualifying Event and the Urban Challenge are presented and used to analyze the system's performance. © 2008 Wiley Periodicals, Inc.
    Journal of Field Robotics 08/2008; 25(8):493 - 527. DOI:10.1002/rob.20253 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Midway through the 2007 DARPA Urban Challenge, MIT's robot “Talos” and Team Cornell's robot “Skynet” collided in a low-speed accident. This accident was one of the first collisions between full-sized autonomous road vehicles. Fortunately, both vehicles went on to finish the race and the collision was thoroughly documented in the vehicle logs. This collaborative study between MIT and Cornell traces the confluence of events that preceded the collision and examines its root causes. A summary of robot–robot interactions during the race is presented. The logs from both vehicles are used to show the gulf between robot and human-driver behavior at close vehicle proximities. Contributing factors are shown to be (1) difficulties in sensor data association leading to an inability to detect slow-moving vehicles and phantom obstacles, (2) failure to anticipate vehicle intent, and (3) an overemphasis on lane constraints versus vehicle proximity in motion planning. Finally, we discuss approaches that could address these issues in future systems, such as intervehicle communication, vehicle detection, and prioritized motion planning. © 2008 Wiley Periodicals, Inc.
    Journal of Field Robotics 10/2008; 25(10):775 - 807. DOI:10.1002/rob.20266 · 1.88 Impact Factor