Article

Cerium oxide-chitosan based nanobiocomposite for food borne mycotoxin detection

Applied Physics Letters (Impact Factor: 3.52). 11/2009; DOI: 10.1063/1.3249586
Source: IEEE Xplore

ABSTRACT Cerium oxide nanoparticles ( NanoCeO 2) and chitosan (CH) based nanobiocomposite film deposited onto indium-tin-oxide coated glass substrate has been used to coimmobilize rabbit immunoglobin (r-IgGs) and bovine serum albumin (BSA) for food borne mycotoxin [ochratoxin-A (OTA)] detection. Electrochemical studies reveal that presence of NanoCeO 2 increases effective electro-active surface area of CH-NanoCeO 2/ indium tin oxide (ITO) nanobiocomposite resulting in high loading of r-IgGs. BSA / r-IgGs / CH-NanoCeO 2/ ITO immunoelectrode exhibits improved linearity (0.25–6.0 ng/dl), detection limit (0.25 ng/dl), response time (25 s), sensitivity (18 μ A / ng   dl -1  cm -2) , and regression coefficient ( r 2∼0.997) .

0 Bookmarks
 · 
141 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ochratoxin-A [7-(L-β-phenylalanylcarbonyl)-carboxyl-5-chloro-8-hydroxy-3,4-dihydro-3R-methyl-isocumarin, OTA] is a common food contaminant mycotoxin that enters the human body through the consumption of improperly stored food products. Upon ingestion, it leads to immuno-suppression and immuno-toxicity. OTA has been known to produce nephrotoxic, teratogenic, and carcinogenic activity (via oxidative DNA damage) in several species. This review intro-duces potentials of electrochemical biosensor to provide breakthroughs in OTA detection through improved selectivity and sensitivity and also the current approaches for detecting OTA in food products.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report an electrochemically synthesized ZnS nanocrystals modified polypyrrole (PPy) nanocomposite film based immunosensor for the detection of C-reactive protein (aCRP). The ZnS-PPy composite film was characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and electrochemical techniques. The modified film showed good biocompatibility with efficient binding to protein antibody (aCRP-Ab) molecules through ZnS nanocrystals, exhibited an attractive platform for immunosensor fabrication. The electrical and sensing properties of the polymer composite film of different thickness towards protein antigen (aCRP-Ag) were delineated. The immunosensor exhibited an impedance response to aCRP-Ag concentration in a linear range from 10 ng to 10 lg mL�1
    Applied Physics Letters 01/2012; · 3.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report results of studies relating to the development of an electrochemical immunosensor based on carboxylated multiwalled carbon nanotubes (c-MWCNTs) electrophoretically deposited onto indium tin oxide (ITO) glass. This c-MWCNTs/ITO electrode surface has been functionalized with monoclonal aflatoxin B1 antibodies (anti-AFB1) for the detection of aflatoxin-B1 using electrochemical technique. Electron microscopy, X-ray diffraction and Raman studies suggest the successful synthesis of c-MWCNTs and the Fourier transform infra-red spectroscopic (FT-IR) studies reveal its carboxylic functionalized nature. The proposed immunosensor shows high sensitivity (95.2 μA ng−1mL cm−2), improved detection limit (0.08 ng mL−1) in the linear detection range of 0.25-1.375 ng mL−1. The low value of association constant (0.0915 ng mL−1) indicates high affinity of immunoelectrode towards aflatoxin (AFB1).
    Sensors and Actuators B Chemical 04/2013; · 3.84 Impact Factor

Full-text

Download
42 Downloads
Available from
May 28, 2014