Article

Cerium oxide-chitosan based nanobiocomposite for food borne mycotoxin detection

Applied Physics Letters (Impact Factor: 3.79). 11/2009; DOI: 10.1063/1.3249586
Source: IEEE Xplore

ABSTRACT Cerium oxide nanoparticles ( NanoCeO 2) and chitosan (CH) based nanobiocomposite film deposited onto indium-tin-oxide coated glass substrate has been used to coimmobilize rabbit immunoglobin (r-IgGs) and bovine serum albumin (BSA) for food borne mycotoxin [ochratoxin-A (OTA)] detection. Electrochemical studies reveal that presence of NanoCeO 2 increases effective electro-active surface area of CH-NanoCeO 2/ indium tin oxide (ITO) nanobiocomposite resulting in high loading of r-IgGs. BSA / r-IgGs / CH-NanoCeO 2/ ITO immunoelectrode exhibits improved linearity (0.25–6.0 ng/dl), detection limit (0.25 ng/dl), response time (25 s), sensitivity (18 μ A / ng   dl -1  cm -2) , and regression coefficient ( r 2∼0.997) .

0 Bookmarks
 · 
126 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article gives an overview of the biosensors for the analysis of mycotoxins, marine toxins and cyanobacterial toxins, describing in depth the electrochemical biosensors that incorporate nanobiotechnological concepts. Firstly, it presents tailor-designed biomolecules, such as recombinant enzymes, recombinant antibody fragments and aptamers as novel biorecognition elements in biosensors. It also reviews the use of metallic nanoparticles (NPs) and carbon nanotubes (CNTs) aiming at improving the electrochemical transduction strategies. Finally, the exploitation of magnetic particles (MPs) as immobilisation carriers in flow-systems and the development of arrays are also described. The incorporation of these nanobiotechnological concepts provides with electrochemical biosensors with superior analytical performance in terms of specificity, sensitivity, stability and analysis time.
    The Analyst 03/2012; 137(5):1055-67. · 4.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report results of studies relating to the development of an electrochemical immunosensor based on carboxylated multiwalled carbon nanotubes (c-MWCNTs) electrophoretically deposited onto indium tin oxide (ITO) glass. This c-MWCNTs/ITO electrode surface has been functionalized with monoclonal aflatoxin B1 antibodies (anti-AFB1) for the detection of aflatoxin-B1 using electrochemical technique. Electron microscopy, X-ray diffraction and Raman studies suggest the successful synthesis of c-MWCNTs and the Fourier transform infra-red spectroscopic (FT-IR) studies reveal its carboxylic functionalized nature. The proposed immunosensor shows high sensitivity (95.2 μA ng−1mL cm−2), improved detection limit (0.08 ng mL−1) in the linear detection range of 0.25-1.375 ng mL−1. The low value of association constant (0.0915 ng mL−1) indicates high affinity of immunoelectrode towards aflatoxin (AFB1).
    Sensors and Actuators B Chemical 04/2013; · 3.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ochratoxin-A [7-(L-β-phenylalanylcarbonyl)-carboxyl-5-chloro-8-hydroxy-3,4-dihydro-3R-methyl-isocumarin, OTA] is a common food contaminant mycotoxin that enters the human body through the consumption of improperly stored food products. Upon ingestion, it leads to immuno-suppression and immuno-toxicity. OTA has been known to produce nephrotoxic, teratogenic, and carcinogenic activity (via oxidative DNA damage) in several species. This review intro-duces potentials of electrochemical biosensor to provide breakthroughs in OTA detection through improved selectivity and sensitivity and also the current approaches for detecting OTA in food products.

Full-text

View
36 Downloads
Available from
May 28, 2014