Conference Paper
Wireless sensor networks powered by ambient energy harvesting (WSNHEAP)  Survey and challenges
Networking Protocols Dept., Inst. for Infocomm Res., Singapore, Singapore
DOI: 10.1109/WIRELESSVITAE.2009.5172411 Conference: Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, 2009. Wireless VITAE 2009. 1st International Conference on Source: IEEE Xplore

Conference Paper: TRW: An Energy Storage Capacity Model for Energy Harvesting Sensors in Wireless Sensor Networks
[Show abstract] [Hide abstract]
ABSTRACT: Energy provisioning trend in Wireless Sensor Networks (WSNs) is shifted towards alternate sources by utilizing available ambient energy, of which solar irradiance harvesting is considered a viable alternative to fixed batteries. However, the energy storage buffer for harvested solar energy should be adaptive to the sporadic nature of the diurnal solar radiation availability. We believe that the typical fixed battery models no longer apply in harvesting enabled sensors. Therefore, we propose a random walk based stochastic model namely; Trinomial Random Walk (TRW) model for the storage capacity of harvesting enabled sensors. We then apply the proposed model on a comprehensive solar radiation data set of four different locations around the globe. Our performance evaluation demonstrates that the proposed model better analyze the sporadic nature of the diurnal solar radiation availability for estimating the required storage capacity. We further investigate an optimal power consumption value for a given energy store size, such that the utilization of harvested energy is maximized and the probability of energy depletion is minimized. For a given energy harvesting scenario, our model better approximates the optimal load with probability of up to a maximum of 98%, compared to a maximum of 37% for the binomial random walk model.PIMRC 2014, Washington D.C; 10/2014 
Conference Paper: TRW: An Energy Storage Capacity Model for Energy Harvesting Sensors in Wireless Sensor Networks
[Show abstract] [Hide abstract]
ABSTRACT: Energy provisioning trend in Wireless Sensor Networks (WSNs) is shifted towards alternate sources by utilizing available ambient energy, of which solar irradiance harvesting is considered a viable alternative to fixed batteries. However, the energy storage buffer for harvested solar energy should be adaptive to the sporadic nature of the diurnal solar radiation availability. We believe that the typical fixed battery models no longer apply in harvesting enabled sensors. Therefore, we propose a random walk based stochastic model namely; Trinomial Random Walk (TRW) model for the storage capacity of harvesting enabled sensors. We then apply the proposed model on a comprehensive solar radiation data set of four different locations around the globe. Our performance evaluation demonstrates that the proposed model better analyze the sporadic nature of the diurnal solar radiation availability for estimating the required storage capacity. We further investigate an optimal power consumption value for a given energy store size, such that the utilization of harvested energy is maximized and the probability of energy depletion is minimized. For a given energy harvesting scenario, our model better approximates the optimal load with probability of up to a maximum of 98%, compared to a maximum of 37% for the binomial random walk model.PIMRC 2014, Washighton D.C; 09/2014 
Article: Energizing wireless sensor networks by energy harvesting systems: Scopes, challenges and approaches
[Show abstract] [Hide abstract]
ABSTRACT: a b s t r a c t As the wireless sensor networks (WSNs) technology has great advancement, small and smart WSN systems now can be used for more complicated and challenging applications. WSNs investigation has primarily believed the use of a convenient and inadequate energy source for empowering the sensors. A sensor becomes useless in the absence of energy and becomes unable to contribute to the utility of the network as a group. Therefore, extensive efforts have been used in finding energyefficient networking protocols for increasing the life span of WSNs. However, there are promising WSN applications where the sensors are obligatory to work for a long time after their deployments. In these cases, batteries are tough or impractical to replace/recharge. Although, a little amount of power is required for these applications, the useable lifetime of WSNs is decreased by the gradual degradation of the batteries. With the motivation of raising the usable WSNs around us and to value a number of economic and environmental limitations, researchers are looking for new green and theoretically unlimited energy sources. Harvesting of energy from the ambient energy is the basement of these new sources. Energy harvesting devices efficiently and effectively capture, accumulate, store, condition, and manage this energy and supply it in a form that can be used to empower WSNs. This harvested energy can be an alternative energy source for addingon a principal power source and thus increase the consistency of the whole WSN by preventing the disruption of power. A great deal of research has been reviewed and specific ranges of applications have been found. Though there are challenges to overcome, different researchers have taken different approaches to solve those. In this review, we have emphasized on different scopes, challenges, ideas and actions of energy harvesting for WSNs.Renewable and Sustainable Energy Reviews 07/2014; 38:973989. · 5.63 Impact Factor
Data provided are for informational purposes only. Although carefully collected, accuracy cannot be guaranteed. The impact factor represents a rough estimation of the journal's impact factor and does not reflect the actual current impact factor. Publisher conditions are provided by RoMEO. Differing provisions from the publisher's actual policy or licence agreement may be applicable.