Conference Paper

A study of cooperative control of self-assembling robots in space with experimental validation

DOI: 10.1109/ROBOT.2009.5152788 Conference: Robotics and Automation, 2009. ICRA '09. IEEE International Conference on
Source: IEEE Xplore

ABSTRACT Modular self-assembling on-orbit robotic and satellite systems can be more reliable, have lower launch costs, and be more easily repaired and refueled. However, when individual modules assemble, many challenges and opportunities make the control of the assembled system complex. These issues include changes in inertial properties, and redundancy of actuators and sensors. Optimal control methods may be used to coordinate the control of the modules after assembly, insure good performance, and best utilize the combined resources of the assembly of modules. Simulation and experimental results compare this Cooperative algorithm's performance to that of an approach in which the control of the individual modules is not coordinated. Cooperative optimal control methods prove well-suited for controlling redundant, modular space systems.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Modular self-assembling on-orbit robots have the potential to reduce mission costs, increase reliability, and permit on-orbit repair and refueling. Modules with a variety of specialized capabilities would self-assemble from orbiting inventories. The assembled modules would then share resources such as power and sensors. As each free-flying module carries its own attitude control actuators, the assembled system has substantial sensor and actuator redundancy. Sensor redundancy enables sensor fusion that reduces measurement error. Actuator redundancy gives a system greater flexibility in managing its fuel usage. In this paper, the control of self-assembling space robots is explored in simulations and experiments. Control and sensor algorithms are presented that exploit the sensor and actuator redundancy. The algorithms address the control challenges introduced by the dynamic interactions between modules, the distribution of fuel resources among modules, and plume impingement.
    Autonomous Robots 01/2011; 31:209-221. · 1.91 Impact Factor

Full-text (2 Sources)

Available from