Article

A diaphragmless shock tube for high temperature kinetic studies

C. S. E. Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439-4831, USA
Review of Scientific Instruments (Impact Factor: 1.6). 10/2008; DOI: 10.1063/1.2976671
Source: IEEE Xplore

ABSTRACT A novel, diaphragmless shock tube (DFST) has been developed for use in high temperature chemical kinetic studies. The design of the apparatus is presented along with performance data that demonstrate the range and reproducibility of reaction conditions that can be generated. The ability to obtain data in the fall off region, confined to much narrower pressure ranges than can be obtained with a conventional shock tube is shown, and results from laser schlieren densitometry experiments on the unimolecular dissociation of phenyl iodide ( P2=57±9 and 122±7  torr , T2=1250–1804  K ) are presented. These are compared with results similar to those that would be obtained from a classical shock tube and the implications for extrapolation by theoretical methods are discussed. Finally, the use of the DFST with an online mass spectrometer to create reproducible experiments that can be signal averaged to improve signal/noise and the quality of mass peaks is demonstrated; something that is not possible with a conventional shock tube where each experiment has to be considered unique.

0 Bookmarks
 · 
48 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pyrolysis of ethylene glycol vinyl ether (EGVE), an initial product of 1,4-dioxane dissociation, was examined in a diaphragmless shock tube (DFST) using laser schlieren densitometry (LS) at 57 ± 2 and 122 ± 3 Torr over 1200-1800 K. DFST/time-of-flight mass spectrometry experiments were also performed to identify reaction products. EGVE was found to dissociate via two channels: (1) a molecular H atom transfer/C-O scission to produce C(2)H(3)OH and CH(3)CHO, and (2) a radical channel involving C-O bond fission generating ˙CH(2)CH(2)OH and ˙CH(2)CHO radicals, with the second channel being strongly dominant over the entire experimental range. A reaction mechanism was constructed for the pyrolysis of EGVE which simulates the LS profiles very well over the full experimental range. The decomposition of EGVE is clearly well into the falloff region for these conditions, and a Gorin model RRKM fit was obtained for the dominant radical channel. The results are in good agreement with the experimental data and suggest the following rate coefficient expressions: k(2,∞) = (6.71 ± 2.6) × 10(27) × T(-3.21)exp(-35512/T) s(-1); k(2)(120 Torr) = (1.23 ± 0.5) × 10(92) × T(-22.87)exp(-48 248/T) s(-1); k(2)(60 Torr) = (2.59 ± 1.0) × 10(88) × T(-21.96)exp(-46283/T) s(-1).
    Physical Chemistry Chemical Physics 12/2011; 13(48):21288-300. · 3.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pyrolysis of methyl acetate, 2% and 4% dilute in krypton, was investigated in a diaphragmless shock tube (DFST) using laser schlieren densitometry (LS). Experiments were performed at 122 ± 3 and 63 ± 2 Torr over the temperature range of 1492-2266 K. Master equation models for the four main dissociation paths of methyl acetate based on a prior study by Peukert et al. [S. Peukert, R. Sivaramakrishnan, M. Su and J. Michael, Combust. Flame, 2012, 159, 2312-2323] were refined and formed the basis for simulating the LS experiments. The density gradient profiles from the LS experiments indicate that the initial dissociation proceeds predominantly by breakage of the C-O bond leading ultimately to two methyl radicals and CO2, accounting for 83-88% of the methyl acetate loss over this temperature range. Rate coefficients for dissociation of methyl acetate were satisfactorily simulated with a master equation model, with modelled rate coefficients of k120 Torr = 9.06 × 10(81) × T(-19.07) × exp(-61 600K/T) s(-1), k60 Torr = 3.71 × 10(82) × T(-19.34) × exp(-61 200K/T) s(-1), and of k∞ = 1.97 × 10(30) × T(-3.80) × exp(-47 900K/T) s(-1) for the major channel, based on fitting to 120 Torr and 60 Torr data taken in this study. The model also captures the pressure dependency of methyl acetate dissociation and resolves an earlier discrepancy concerning the mechanism of dissociation of methyl acetate.
    Physical Chemistry Chemical Physics 03/2014; · 3.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A miniature high repetition rate shock tube with excellent reproducibility has been constructed to facilitate high temperature, high pressure, gas phase experiments at facilities such as synchrotron light sources where space is limited and many experiments need to be averaged to obtain adequate signal levels. The shock tube is designed to generate reaction conditions of T > 600 K, P < 100 bars at a cycle rate of up to 4 Hz. The design of the apparatus is discussed in detail, and data are presented to demonstrate that well-formed shock waves with predictable characteristics are created, repeatably. Two synchrotron-based experiments using this apparatus are also briefly described here, demonstrating the potential of the shock tube for research at synchrotron light sources.
    The Review of scientific instruments 09/2013; 84(9):094102. · 1.52 Impact Factor