Article

# Instantaneous Microwave Frequency Measurement Using an Optical Phase Modulator

Dept. of Inf. & Electron. Eng., Zhejiang Univ., Hangzhou

IEEE Microwave and Wireless Components Letters (Impact Factor: 1.78). 07/2009; DOI: 10.1109/LMWC.2009.2020046 Source: IEEE Xplore

- [Show abstract] [Hide abstract]

**ABSTRACT:**This paper expands upon the RF photonic theory of electrooptic phase and intensity modulation detection as seen when coupled in tandem with an asymmetric Mach-Zehnder interferometer through the derivation of power transfer functions for such optical-microwave configurations. An inspection of the theory is presented and validated through experimental results. Several applications of a modulation/interferometric architecture are also reviewed, delineating the importance of a valid model for predicting the behavior of similar analog optical systems.IEEE Photonics Journal 01/2013; 5(4):5501211-5501211. · 2.36 Impact Factor - [Show abstract] [Hide abstract]

**ABSTRACT:**A photonic approach to estimating microwave frequency with high-coding-efficiency digital outputs and large measurement range is proposed and experimentally demonstrated. In the proposed approach, an optical filter array that consists of N filters is designed, wherein N - 1 optical phase-shifted filters have an identical free spectral range (FSR) but a phase increment of π/(N - 1) in the transmission responses and one filter has a doubled FSR. The filters are then employed to process the single optical sideband generated by applying a microwave signal to a carrier-suppressed single-sideband (CS-SSB) modulation module, to perform the frequency-to-amplitude conversion and the analog-to-digital conversion simultaneously. After power detection and decision operation, an N-bit digital result in the form of binary code is obtained for microwave frequency measurement within the range of 2 × FSR. A proof-of-concept experiment is performed to verify the proposed approach. A 5-bit binary code with effective number of bits of four is generated to indicate the microwave frequency in the range from 10 to 40 GHz.IEEE Photonics Journal 10/2013; 5(5):5501906. · 2.36 Impact Factor - [Show abstract] [Hide abstract]

**ABSTRACT:**A microwave photonic frequency measurement sys-tem is demonstrated practically. The system employs the four-wave mixing effect in a highly nonlinear fiber to produce a low-frequency output voltage, which is a function of input RF frequency. Using an algorithm that allows dynamic reconfiguration, the system is able to instantaneously monitor a broad frequency range for threat sig-nals and to provide fast yet accurate frequency measurement. An operating frequency range of 0.04–40 GHz with at most 0.016% error is achieved.Journal of Lightwave Technology 11/2014; 32(15). · 2.56 Impact Factor

Data provided are for informational purposes only. Although carefully collected, accuracy cannot be guaranteed. The impact factor represents a rough estimation of the journal's impact factor and does not reflect the actual current impact factor. Publisher conditions are provided by RoMEO. Differing provisions from the publisher's actual policy or licence agreement may be applicable.