Conference Paper

Analytical solution of the rate equation in direct modulation of semiconductor laser

Fac. of Phys., Vietnam Nat. Univ., Hanoi
DOI: 10.1109/ATC.2008.4760600 Conference: Advanced Technologies for Communications, 2008. ATC 2008. International Conference on
Source: IEEE Xplore

ABSTRACT We studied the rate equations of a semiconductor laser operating in a direct modulation mode for the purpose of obtaining the direct dependence of output photon density on modulating current. We show that the system of differential equations may be reduced to a special case when the spontaneous carrier decay rate is equal to the photon decay rate. The unique solution is obtained for this case. We also show that a laser operating in direct modulation exhibits an inertia in switching between the optical and electrical fields which introduces a corresponding loss in the modulating current. The output photon density and the input carrier density depend directly on this loss. For the systems with a minimal and maximal loss, the output photon density can be obtained analytically.

Download full-text


Available from: Nam nhat Hoang, Aug 19, 2014
34 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We studied the rate equations of direct modulation laser and showed that it may be reduced to the special case when spontaneous carrier decay rate is equal to the photon decay rate. The solution in this case is unique. For the general case, we investigated the vector field of the differential system of the rate equations and pointed out the basic stability problems of this system when the modulation current was required to change.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A memory diagram, i.e., regions where pattern effects appear at the output of the laser, in the bias-current-versus-modulation-period plane is obtained, both by numerical simulation of the rate equations and by using an analytical approach. A simple method, based on the superposition of the turn-on time probability distribution for the periodic sequence . . .1111. . . of input bits and the turn-on time probability distribution obtained for repetitive gain switching, is used to describe the response of the laser to a pseudorandom word modulation of the injection current
    IEEE Journal of Quantum Electronics 07/1993; 29(6-29):1624 - 1630. DOI:10.1109/3.234414 · 1.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Semiconductor lasers, also denoted as laser diodes, are a key element in an increasing number of optoelectronic systems. The performance of these systems strongly relies on the performance of their component laser diodes. As an example, Fig. 1.1 shows a simple optical fibre communication system in which the laser diode converts electrical signals into optical signals, which are transmitted by an optical fibre and finally received by a photodiode.