Conference Paper

Two-Degree-of-Freedom PI/PID tuning approach for smooth control on cascade control systems

Dept. de Autom., Univ. de Costa Rica, San Jose, Costa Rica
DOI: 10.1109/CDC.2008.4738796 Conference: Decision and Control, 2008. CDC 2008. 47th IEEE Conference on
Source: IEEE Xplore

ABSTRACT A design approach for two-degree-of-freedom (2-DOF) PID controllers within a cascade control configuration that guarantees smooth control is presented in this paper. The rationale of operation associated to both, the inner and outer controllers, determines the need of good performance for disturbance attenuation (regulation) as well as set-point following (tracking). Therefore the use of 2-DOF controllers is introduced. However the use of 2-DOF controllers introduces additional parameters that need to be tuned appropriately. Specially for the case of PI/PID controllers there are not known clear auto-tuning guidelines for such situation. The approach undertaken in this paper provides the complete set of tuning parameters for the inner (2-DOF PI) controller and the outer (2-DOF PID) controller. The design equations are formulated in such a way that a non-oscillatory response is specified for both the inner and outer loop. A side advantage of providing the complete set of parameters is that it avoids the need for the usual identification experiment for the tuning of the outer controller.

Full-text

Available from: Ramon Vilanova, Mar 06, 2014
1 Follower
 · 
255 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this article, an internal model control plus proportional-integral-derivative (IMC–PID) tuning procedure for cascade control systems is proposed based on the gain and phase margin specifications of the inner and outer loop. The internal model control parameters are adjusted according to the desired frequency response of each loop with a minimum interaction between the inner and outer PID controllers, obtaining a fine tuning and the desired gain and phase margins specifications due to an appropriate selection of the PID controller gains and constants. Given the design specifications for the inner and outer loop, this tuning procedure adjusts the IMC parameter of each controller independently, with no interference between the inner and outer loop obtaining a robust method for cascade controllers with better performance than sequential tuning or other frequency domain-based methods. This technique is accurate and simple, providing a convenient technique for the PID tuning of cascade control systems in different applications such as mechanical, electrical or chemical systems. The proposed tuning method explained in this article provides a flexible tuning procedure in comparison with other tuning procedures because each loop is tuned simultaneously without modifying the robustness characteristics of the inner and outer loop. Several experiments are shown to compare and validate the effectiveness of the proposed tuning procedure over other sequential or cascade tuning methods; some experiments under different conditions are done to test the performance of the proposed tuning technique. For these reasons, a robustness analysis based on sensitivity is shown in this article to analyze the disturbance rejection properties and the relations of the IMC parameters.
    Neural Computing and Applications 03/2014; 25(5). DOI:10.1007/s00521-014-1560-x · 1.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The process of transferring the natural gas from the gas well to the gas separation plant encountered some delay time depending on the distance between this well and the factory, the cross section of the transport line, the geometry of this transport line, the well pressure and others. To control the factory inlet pressure by controlling the choke valve existing at the well head, the delay time makes the traditional control systems to fail. In this framework we aim to solve this problem by presenting a novel controller design and delay modeling technique. The presented technique is compared to the previous control system design and delay approximation techniques.
    07/2014; DOI:10.1016/j.jesit.2014.07.006
  • [Show abstract] [Hide abstract]
    ABSTRACT: A design approach for Two-Degree-of-Freedom (2-DoF) PID controllers within a cascade control configuration that guarantees robust and smooth control is presented in this paper. The use of a cascade control configuration comes into place when the use of an additional (intermediate) sensor provides the possibility for a compensation of a load-disturbance before it affects the output variable. The rationale of operation associated to both the inner and outer controllers determines the need of good performance for disturbance attenuation (regulation) as well as set-point following (tracking). Therefore, the use of 2-DoF controllers is introduced. However, the use of 2-DoF controllers, introduces additional parameters that need to be tuned appropriately. Specially for the case of PI/PID controllers there are not known clear auto-tuning guidelines for such situation. The approach undertaken in this paper provides the complete set of tuning parameters for the inner (2-DoF PI) controller and the outer (2-DoF PID) controller. The trade-off among control system performance (measured in terms of closed-loop response speed) and robustness allows to derive a recommendation for the design-parameter lower limit. The design equations are formulated in such a way that a non-oscillatory response is specified for both the inner and outer loop. A side advantage of providing the complete set of parameters is that it avoids the need for the usual identification experiment for the tuning of the outer controller.
    Journal of Process Control 12/2009; 19(10):1658-1670. DOI:10.1016/j.jprocont.2009.08.006 · 2.18 Impact Factor