Fast Dynamics of an Eel-Like Robot—Comparisons With Navier–Stokes Simulations

Inst. de Rech. en Commun. et Cybernetique de Nantes, Ecole des Mines de Nantes, Nantes
IEEE Transactions on Robotics (Impact Factor: 2.57). 01/2009; DOI: 10.1109/TRO.2008.2006249
Source: IEEE Xplore

ABSTRACT This paper proposes a dynamic model of the swim of elongated fish suited to the online control of biomimetic eel-like robots. The approach can be considered as an extension of the original reactive ldquolarge elongated body theoryrdquo of Lighthill to the 3-D self-propulsion to which a resistive empirical model has been added. While all the mathematical fundamentals have been detailed by Boyer . (, 2007), this paper essentially focuses on the numerical validation and calibration of the model and the study of swimming gaits. The proposed model is coupled to an algorithm allowing us to compute the motion of the fish head and the field of internal control torque from the knowledge of the imposed internal strain fields. Based on the Newton-Euler formalism of robot dynamics, this algorithm works faster than real time. As far as precision is concerned, many tests obtained with several planar and 3-D gaits are reported and compared (in the planar case) with a Navier-Stokes solver, which, until today have been devoted to the planar swim. The comparisons obtained are very encouraging since in all the cases we tested, the differences between our simplified and reference simulations do not exceed 10%.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Motivated by the need for efficient control design, in this paper we consider the averaging of dynamics for a tail-actuated robotic fish, based on an experimentally validated dynamic model that incorporates rigid body dynamics and Lighthill's large-amplitude elongated-body theory. We first show that classical averaging theory fails in this case because of the relatively large oscillatory input in the driving terms. On the other hand, while the first-order geometric averaging method for systems with highly oscillatory inputs is able to capture the original time-dependent dynamics, the resulting average model is overly complex for controller design. We propose a novel control-oriented, data-driven averaging approach for robotic fish dynamics, where a scaling function is introduced on top of the classical averaging method. We run extensive simulations for different combinations of tail-beat bias, amplitude, and frequency, and find that the scaling function is constant for the force equations and varies linearly with the tail-beat bias for the moment equation. The validity of the resulting average model has been confirmed in simulation results for open-loop dynamics with new sets of tail-beat parameters, and for closed-loop dynamics when proportional control of the tail-beat bias is used in target tracking.
    American Control Conference (ACC), 2013; 01/2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several efforts have recently been made to relate the displacement of swimming three-link systems over strokes to geometric quantities of the strokes. In doing so, they provide powerful, intuitive representations of the bounds on a system's locomotion capabilities and the forms of its optimal strokes or gaits. While this approach has been successful for finding net rotations, noncommutativity concerns have prevented it from working for net translations. Our recent results on other locomoting systems have shown that the degree of this noncommutativity is dependent on the coordinates used to describe the problem and that it can be greatly mitigated by an optimal choice of coordinates. Here, we extend the benefits of this optimal-coordinate approach to the analysis of swimming at the extremes of low and high Reynolds numbers.
    IEEE Transactions on Robotics 01/2013; 29(3):615-624. · 2.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The problem of energy harvesting from flutter instabilities in flexible slender structures in axial flows is considered. In a recent study, we used a reduced order theoretical model of such a system to demonstrate the feasibility for harvesting energy from these structures. Following this preliminary study, we now consider a continuous fluid-structure system. Energy harvesting is modelled as strain-based damping and the slender structure under investigation lies in a moderate fluid loading range, for which {the flexible structure} may be destabilised by damping. The key goal of this work is to {analyse the effect of damping distribution and intensity on the amount of energy harvested by the system}. The numerical results {indeed} suggest that non-uniform damping distributions may significantly improve the power harvesting capacity of the system. For low damping levels, clustered dampers at the position of peak curvature are shown to be optimal. Conversely for higher damping, harvesters distributed over the whole structure are more effective.
    Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences 07/2012; 468(2147). · 2.38 Impact Factor