Article

In Vivo Suppression of HIV by Antigen Specific T Cells Derived from Engineered Hematopoietic Stem Cells

Division of Hematology-Oncology, The David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America.
PLoS Pathogens (Impact Factor: 8.06). 04/2012; 8(4):e1002649. DOI: 10.1371/journal.ppat.1002649
Source: PubMed

ABSTRACT The HIV-specific cytotoxic T lymphocyte (CTL) response is a critical component in controlling viral replication in vivo, but ultimately fails in its ability to eradicate the virus. Our intent in these studies is to develop ways to enhance and restore the HIV-specific CTL response to allow long-term viral suppression or viral clearance. In our approach, we sought to genetically manipulate human hematopoietic stem cells (HSCs) such that they differentiate into mature CTL that will kill HIV infected cells. To perform this, we molecularly cloned an HIV-specific T cell receptor (TCR) from CD8+ T cells that specifically targets an epitope of the HIV-1 Gag protein. This TCR was then used to genetically transduce HSCs. These HSCs were then introduced into a humanized mouse containing human fetal liver, fetal thymus, and hematopoietic progenitor cells, and were allowed to differentiate into mature human CD8+ CTL. We found human, HIV-specific CTL in multiple tissues in the mouse. Thus, genetic modification of human HSCs with a cloned TCR allows proper differentiation of the cells to occur in vivo, and these cells migrate to multiple anatomic sites, mimicking what is seen in humans. To determine if the presence of the transgenic, HIV-specific TCR has an effect on suppressing HIV replication, we infected with HIV-1 mice expressing the transgenic HIV-specific TCR and, separately, mice expressing a non-specific control TCR. We observed significant suppression of HIV replication in multiple organs in the mice expressing the HIV-specific TCR as compared to control, indicating that the presence of genetically modified HIV-specific CTL can form a functional antiviral response in vivo. These results strongly suggest that stem cell based gene therapy may be a feasible approach in the treatment of chronic viral infections and provide a foundation towards the development of this type of strategy.

0 Followers
 · 
158 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The invariant natural killer T (iNKT) cell has been shown to play a central role in early stages immune responses against Mycobacterium tuberculosis (Mtb) infection, which become nonresponsive (anergic) and fails to control the growth of Mtb in patients with active tuberculosis. Enhancement of iNKT cell responses to Mtb antigens can help to resist infection. In the present study, an Mtb 38-kDa antigen-specific T cell receptor (TCR) was isolated from human CD8(+) T cells stimulated by 38-kDa antigen in vitro, and then transduced into primary iNKT cells by retrovirus vector. The TCR gene-modified iNKT cells are endowed with new features to behave as a conventional MHC class I restricted CD8(+) T lymphocyte by displaying specific antigen recognition and anti-Mtb antigen activity in vitro. At the same time, the engineered iNKT cells retaining its original capacity to be stimulated proliferation by non-protein antigens α-Gal-Cer. This work is the first attempt to engineer iNKT cells by exogenous TCR genes and demonstrated that iNKT cell, as well as CD4(+) and CD8(+) T cells, can be genetically engineered to confer them a defined and alternative specificity, which provides new insights into TCR gene therapy for tuberculosis patients, especially those infected with drug-resistant Mtb.
    Journal of Molecular Medicine 05/2011; 89(9):903-13. DOI:10.1007/s00109-011-0760-4 · 4.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Latent HIV reservoirs are the greatest challenge facing an HIV cure. Here, we review recent evidence supporting an important role for the host immune response, in particular HLA class I-restricted CD8+ T lymphocytes, in modulating HIV reservoirs during natural infection. These observations indicate that factors governing immune-mediated control of HIV may also contribute to the clearance of viral reservoirs. As such, critical gaps in our understanding of HIV immunology hinder efforts to develop both an effective HIV vaccine as well as novel therapies that may lead to a cure. The importance of elucidating correlates of protective cellular immunity should be recognized during research to develop and test potential HIV elimination strategies.
    08/2012; 2(5):599-605. DOI:10.1016/j.coviro.2012.08.003
  • Source

Preview (2 Sources)

Download
2 Downloads
Available from