In Vivo Suppression of HIV by Antigen Specific T Cells Derived from Engineered Hematopoietic Stem Cells

Division of Hematology-Oncology, The David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America.
PLoS Pathogens (Impact Factor: 8.06). 04/2012; 8(4):e1002649. DOI: 10.1371/journal.ppat.1002649
Source: PubMed

ABSTRACT The HIV-specific cytotoxic T lymphocyte (CTL) response is a critical component in controlling viral replication in vivo, but ultimately fails in its ability to eradicate the virus. Our intent in these studies is to develop ways to enhance and restore the HIV-specific CTL response to allow long-term viral suppression or viral clearance. In our approach, we sought to genetically manipulate human hematopoietic stem cells (HSCs) such that they differentiate into mature CTL that will kill HIV infected cells. To perform this, we molecularly cloned an HIV-specific T cell receptor (TCR) from CD8+ T cells that specifically targets an epitope of the HIV-1 Gag protein. This TCR was then used to genetically transduce HSCs. These HSCs were then introduced into a humanized mouse containing human fetal liver, fetal thymus, and hematopoietic progenitor cells, and were allowed to differentiate into mature human CD8+ CTL. We found human, HIV-specific CTL in multiple tissues in the mouse. Thus, genetic modification of human HSCs with a cloned TCR allows proper differentiation of the cells to occur in vivo, and these cells migrate to multiple anatomic sites, mimicking what is seen in humans. To determine if the presence of the transgenic, HIV-specific TCR has an effect on suppressing HIV replication, we infected with HIV-1 mice expressing the transgenic HIV-specific TCR and, separately, mice expressing a non-specific control TCR. We observed significant suppression of HIV replication in multiple organs in the mice expressing the HIV-specific TCR as compared to control, indicating that the presence of genetically modified HIV-specific CTL can form a functional antiviral response in vivo. These results strongly suggest that stem cell based gene therapy may be a feasible approach in the treatment of chronic viral infections and provide a foundation towards the development of this type of strategy.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The critical importance of CD4(+) T cells in coordinating innate and adaptive immune responses is evidenced by the susceptibility to various pathogenic and opportunistic infections that arises from primary or acquired CD4(+) T cell immunodeficiency, such as following HIV-1 infection. However, despite the clearly defined roles of cytotoxic CD8(+) T cells and antibodies in host protection from retroviruses, the ability of CD4(+) T cells to exert a similar function remains unclear. Recent studies in various settings have drawn attention to the complexity of the T cell response within and between individuals. Distinct TCR clonotypes within an individual differ substantially in their response to the same epitope. Functionally similar, "public" TCR clonotypes can also dominate the response of different individuals. TCR affinity for antigen directly influences expansion and differentiation of responding T cells, also likely affecting their ultimate protective capacity. With this increasing understanding of the parameters that determine the magnitude and effector type of the T cell response, we are now better equipped to address the protective capacity against retroviruses of CD4(+) T cell clonotypes induced by natural infection or vaccination.
    Journal of leukocyte biology 04/2014; 96(1). DOI:10.1189/jlb.2RI0613-347R · 4.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, a novel adeno-associated virus (AAV) vector-mediated gene delivery approach was taken to improve the reconstitution of functional CD8(+) T cells in humanized mice, thereby mimicking the human immune system (HIS). Human genes encoding HLA-A2 and selected human cytokines (A2/hucytokines) were introduced to an immune-deficient mouse model [NOD/SCID/IL2rγ(null) (NSG) mice] using AAV serotype 9 (AAV9) vectors, followed by transplantation of human hematopoietic stem cells. NSG mice transduced with AAV9 encoding A2/hucytokines resulted in higher levels of reconstitution of human CD45(+) cells compared to NSG mice transduced with AAV9 encoding HLA-A2 alone or HLA-A2-transgenic NSG mice. Furthermore, this group of HIS mice also mounted the highest level of antigen-specific A2-restricted human CD8(+) T-cell response upon vaccination with recombinant adenoviruses expressing human malaria and HIV antigens. Finally, the human CD8(+) T-cell response induced in human malaria vaccine-immunized HIS mice was shown to be functional by displaying cytotoxic activity against hepatocytes that express the human malaria antigen in the context of A2 molecules. Taken together, our data show that AAV vector-mediated gene delivery is a simple and efficient method to transfer multiple human genes to immune-deficient mice, thus facilitating successful reconstitution of HIS in mice. The HIS mice generated in this study should ultimately allow us to swiftly evaluate the T-cell immunogenicity of various human vaccine candidates in a pre-clinical setting.
    PLoS ONE 02/2014; 9(2):e88205. DOI:10.1371/journal.pone.0088205 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of severe immunodeficient mouse strains containing various human genes, including cytokines or HLA, has enabled the reconstitution of functional human immune systems after transplantation of human hematopoietic stem cells (HSC). Accumulating evidence has suggested that HLA-restricted antigen-specific human T-cell responses can be generated in these humanized mice. To directly monitor immune responses of human CD4+ T cells, we introduced β-lactoglobulin (BLG)-specific T cell receptor (TCR) genes derived from CD4+ T-cell clones of cow-milk allergy patients into HSCs, and subsequently transplanted them into NOG-HLA-DR4 transgenic / I-Aβ deficient mice (NOG-DR4/I-Ao). In the thymus, thymocytes with BLG-specific TCR preferentially differentiated into CD4+CD8- single-positive cells. Adoptive transfer of mature CD4+ T cells expressing the TCR into recipient NOG-DR4/I-Ao mice demonstrated that human CD4+ T cells proliferated in response to antigenic stimulation and produced IFN-γ in vivo, suggesting that functional T-cell reactions (especially Th1-skewed responses) were induced in humanized mice.
    Biochemical and Biophysical Research Communications 11/2014; 456(1). DOI:10.1016/j.bbrc.2014.11.062 · 2.28 Impact Factor

Preview (2 Sources)

Available from