Cisplatin nephrotoxicity involves mitochondrial injury with impaired tubular mitochondrial enzyme activity.

Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
Journal of Histochemistry and Cytochemistry (Impact Factor: 2.4). 04/2012; 60(7):521-9. DOI: 10.1369/0022155412446227
Source: PubMed

ABSTRACT Cisplatin is a widely used antineoplastic agent. However, its major limitation is dose-dependent nephrotoxicity whose precise mechanism is poorly understood. Recent studies have suggested that mitochondrial dysfunction in tubular epithelium contributes to cisplatin-induced nephrotoxicity. Here the authors extend those findings by describing the role of an important electron transport chain enzyme, cytochrome c oxidase (COX). Immunohistochemistry for COX 1 protein demonstrated that, in response to cisplatin, expression was mostly maintained in focally damaged tubular epithelium. In contrast, COX enzyme activity in proximal tubules (by light microscopy) was decreased. Ultrastructural analysis of the cortex and outer stripe of the outer medulla showed decreased mitochondrial mass, disruption of cristae, and extensive mitochondrial swelling in proximal tubular epithelium. Functional electron microscopy showed that COX enzyme activity was decreased in the remaining mitochondria in the proximal tubules but maintained in distal tubules. In summary, cisplatin-induced nephrotoxicity is associated with structural and functional damage to the mitochondria. More broadly, using functional electron microscopy to measure mitochondrial enzyme activity may generate mechanistic insights across a spectrum of renal disorders.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Mitochondrial dysfunction is a crucial mechanism by which cisplatin, a potent chemotherapeutic agent, causes nephrotoxicity where mitochondrial electron transport complexes are shifted mostly toward imbalanced reactive oxygen species versus energy production. In the present study, the protective role of tempol, a membrane-permeable superoxide dismutase mimetic agent, was evaluated on mitochondrial dysfunction and the subsequent damage induced by cisplatin nephrotoxicity in mice. Methods and Findings Nephrotoxicity was assessed 72 h after a single i.p. injection of cisplatin (25 mg/kg) with or without oral administration of tempol (100 mg/kg/day). Serum creatinine and urea as well as glucosuria and proteinuria were evaluated. Both kidneys were isolated for estimation of oxidative stress markers, adenosine triphosphate (ATP) content and caspase-3 activity. Moreover, mitochondrial oxidative phosphorylation capacity, complexes I–IV activities and mitochondrial nitric oxide synthase (mNOS) protein expression were measured along with histological examinations of renal tubular damage and mitochondrial ultrastructural changes. Tempol was effective against cisplatin-induced elevation of serum creatinine and urea as well as glucosuria and proteinuria. Moreover, pretreatment with tempol notably inhibited cisplatin-induced oxidative stress and disruption of mitochondrial function by restoring mitochondrial oxidative phosphorylation, complexes I and III activities, mNOS protein expression and ATP content. Tempol also provided significant protection against apoptosis, tubular damage and mitochondrial ultrastructural changes. Interestingly, tempol did not interfere with the cytotoxic effect of cisplatin against the growth of solid Ehrlich carcinoma. Conclusion This study highlights the potential role of tempol in inhibiting cisplatin-induced nephrotoxicity without affecting its antitumor activity via amelioration of oxidative stress and mitochondrial dysfunction.
    PLoS ONE 10/2014; 9(10):e108889. DOI:10.1371/journal.pone.0108889 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Classical (or isolated) methylmalonic acidemia (MMA) is a heterogeneous inborn error of metabolism most typically caused by mutations in the vitamin B12-dependent enzyme methylmalonyl-CoA mutase (MUT). With the improved survival of individuals with MMA, chronic kidney disease has become recognized as part of the disorder. The precise description of renal pathology in MMA remains uncertain. Light microscopy, histochemical, and ultrastructural studies were performed on the native kidney obtained from a 19-year-old patient with mut MMA who developed end stage renal disease and underwent a combined liver-kidney transplantation. The light microscopy study of the renal parenchyma in the MMA kidney revealed extensive interstitial fibrosis, chronic inflammation, and tubular atrophy. Intact proximal tubules were distinguished by the widespread formation of large, circular, pale mitochondria with diminished cristae. Histochemical preparations showed a reduction of cytochrome c oxidase and NADH activities, and the electron microscopy analysis demonstrated loss of cytochrome c enzyme activity in these enlarged mitochondria. Our results demonstrate that the renal pathology of MMA is characterized by megamitochondria formation in the proximal tubules in concert with electron transport chain dysfunction. Our findings suggest therapies that target mitochondrial function as a treatment for the chronic kidney disease of MMA.
    Pediatric Nephrology 05/2014; 29(11). DOI:10.1007/s00467-014-2847-y · 2.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cisplatin is a widely used, effective anticancer drug. Its use, however, is associated with several side effects including nephrotoxicity and neurotoxicity. It is known that cisplatin is accumulated in cells by the organic cation transport system and reacts with nucleotides, damaging them, but the precise target of cisplatin-induced neurotoxicity remains obscure. Here we report direct visualization of cisplatin inside brain cells using in vivo “cisplatin staining,” a technique that takes advantage of the high electron density of cisplatin, which contains platinum (atomic mass = 195). After applying 0.1% cisplatin to living brain slices for 30 min, we fixed the tissue and observed the accumulated cisplatin using electron microscopy. We found that cisplatin was localized mainly to ribosomes associated with endoplasmic reticulum (EPR) in glial cells and to the myelin sheath formed by oligodendrocytes around neuronal axons. Staining of nuclear DNA was moderate. Our in vivo “cisplatin staining” method validated that the main target of cisplatin is a direct attack on myelin and the RNA contained in ribosomes.
    12/2014; 2014:174039. DOI:10.1155/2014/174039


Available from
May 23, 2014