Surviving sepsis: A time for "don't just do something, stand there" philosophy?

EviMed Research Group, LLC, Goshen, MA
Critical care medicine (Impact Factor: 6.31). 05/2012; 40(5):1648-9. DOI: 10.1097/CCM.0b013e3182451dae
Source: PubMed
1 Follower
6 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2003, critical care and infectious disease experts representing 11 international organizations developed management guidelines for severe sepsis and septic shock that would be of practical use for the bedside clinician, under the auspices of the Surviving Sepsis Campaign, an international effort to increase awareness and improve outcome in severe sepsis. The process included a modified Delphi method, a consensus conference, several subsequent smaller meetings of subgroups and key individuals, teleconferences, and electronic-based discussion among subgroups and among the entire committee. We used a modified Delphi methodology for grading recommendations, built on a 2001 publication sponsored by the International Sepsis Forum. We undertook a systematic review of the literature graded along five levels to create recommendation grades from A to E, with A being the highest grade. Pediatric considerations were provided to contrast adult and pediatric management. Key recommendations, listed by category and not by hierarchy, include early goal-directed resuscitation of the septic patient during the first 6 hrs after recognition; appropriate diagnostic studies to ascertain causative organisms before starting antibiotics; early administration of broad-spectrum antibiotic therapy; reassessment of antibiotic therapy with microbiology and clinical data to narrow coverage, when appropriate; a usual 7-10 days of antibiotic therapy guided by clinical response; source control with attention to the method that balances risks and benefits; equivalence of crystalloid and colloid resuscitation; aggressive fluid challenge to restore mean circulating filling pressure; vasopressor preference for norepinephrine and dopamine; cautious use of vasopressin pending further studies; avoiding low-dose dopamine administration for renal protection; consideration of dobutamine inotropic therapy in some clinical situations; avoidance of supranormal oxygen delivery as a goal of therapy; stress-dose steroid therapy for septic shock; use of recombinant activated protein C in patients with severe sepsis and high risk for death; with resolution of tissue hypoperfusion and in the absence of coronary artery disease or acute hemorrhage, targeting a hemoglobin of 7-9 g/dL; appropriate use of fresh frozen plasma and platelets; a low tidal volume and limitation of inspiratory plateau pressure strategy for acute lung injury and acute respiratory distress syndrome; application of a minimal amount of positive end-expiratory pressure in acute lung injury/acute respiratory distress syndrome; a semirecumbent bed position unless contraindicated; protocols for weaning and sedation/analgesia, using either intermittent bolus sedation or continuous infusion sedation with daily interruptions/lightening; avoidance of neuromuscular blockers, if at all possible; maintenance of blood glucose <150 mg/dL after initial stabilization; equivalence of continuous veno-veno hemofiltration and intermittent hemodialysis; lack of utility of bicarbonate use for pH > or =7.15; use of deep vein thrombosis/stress ulcer prophylaxis; and consideration of limitation of support where appropriate. Pediatric considerations included a more likely need for intubation due to low functional residual capacity; more difficult intravenous access; fluid resuscitation based on weight with 40-60 mL/kg or higher needed; decreased cardiac output and increased systemic vascular resistance as the most common hemodynamic profile; greater use of physical examination therapeutic end points; unsettled issue of high-dose steroids for therapy of septic shock; and greater risk of hypoglycemia with aggressive glucose control. Evidence-based recommendations can be made regarding many aspects of the acute management of sepsis and septic shock that are hoped to translate into improved outcomes for the critically ill patient. The impact of these guidelines will be formally tested and guidelines updated annually and even more rapidly as some important new knowledge becomes as available.
    Critical Care Medicine 03/2004; 32(3):858-73. DOI:10.1097/01.CCM.0000117317.18092.E4 · 6.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drotrecogin alfa (activated), or recombinant human activated protein C, has antithrombotic, antiinflammatory, and profibrinolytic properties. In a previous study, drotrecogin alfa activated produced dose-dependent reductions in the levels of markers of coagulation and inflammation in patients with severe sepsis. In this phase 3 trial, we assessed whether treatment with drotrecogin alfa activated reduced the rate of death from any cause among patients with severe sepsis. We conducted a randomized, double-blind, placebo-controlled, multicenter trial. Patients with systemic inflammation and organ failure due to acute infection were enrolled and assigned to receive an intravenous infusion of either placebo or drotrecogin alfa activated (24 microg per kilogram of body weight per hour) for a total duration of 96 hours. The prospectively defined primary end point was death from any cause and was assessed 28 days after the start of the infusion. Patients were monitored for adverse events; changes in vital signs, laboratory variables, and the results of microbiologic cultures; and the development of neutralizing antibodies against activated protein C. A total of 1690 randomized patients were treated (840 in the placebo group and 850 in the drotrecogin alfa activated group). The mortality rate was 30.8 percent in the placebo group and 24.7 percent in the drotrecogin alfa activated group. On the basis of the prospectively defined primary analysis, treatment with drotrecogin alfa activated was associated with a reduction in the relative risk of death of 19.4 percent (95 percent confidence interval, 6.6 to 30.5) and an absolute reduction in the risk of death of 6.1 percent (P=0.005). The incidence of serious bleeding was higher in the drotrecogin alfa activated group than in the placebo group (3.5 percent vs. 2.0 percent, P=0.06). Treatment with drotrecogin alfa activated significantly reduces mortality in patients with severe sepsis and may be associated with an increased risk of bleeding.
    New England Journal of Medicine 04/2001; 344(10):699-709. DOI:10.1056/NEJM200103083441001 · 55.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Surviving Sepsis Campaign (SSC or "the Campaign") developed guidelines for management of severe sepsis and septic shock. A performance improvement initiative targeted changing clinical behavior (process improvement) via bundles based on key SSC guideline recommendations on process improvement and patient outcomes. A multifaceted intervention to facilitate compliance with selected guideline recommendations in the ICU, ED, and wards of individual hospitals and regional hospital networks was implemented voluntarily in the US, Europe, and South America. Elements of the guidelines were "bundled" into two sets of targets to be completed within 6 h and within 24 h. An analysis was conducted on data submitted from January 2005 through March 2008. Data from 15,022 subjects at 165 sites were analyzed to determine the compliance with bundle targets and association with hospital mortality. Compliance with the entire resuscitation bundle increased linearly from 10.9% in the first site quarter to 31.3% by the end of 2 years (P<0.0001). Compliance with the entire management bundle started at 18.4% in the first quarter and increased to 36.1% by the end of 2 years (P = 0.008). Compliance with all bundle elements increased significantly, except for inspiratory plateau pressure, which was high at baseline. Unadjusted hospital mortality decreased from 37 to 30.8% over 2 years (P = 0.001). The adjusted odds ratio for mortality improved the longer a site was in the Campaign, resulting in an adjusted absolute drop of 0.8% per quarter and 5.4% over 2 years (95% CI, 2.5-8.4%). The Campaign was associated with sustained, continuous quality improvement in sepsis care. Although not necessarily cause and effect, a reduction in reported hospital mortality rates was associated with participation. The implications of this study may serve as an impetus for similar improvement efforts.
    Intensive Care Medicine 02/2010; 36(2):222-31. DOI:10.1007/s00134-009-1738-3 · 7.21 Impact Factor