Article

Changes in neuronal DNA content variation in the human brain during aging.

Paul Flechsig Institute for Brain Research, Universität Leipzig, Germany.
Aging cell (Impact Factor: 7.55). 04/2012; 11(4):628-33. DOI: 10.1111/j.1474-9726.2012.00826.x
Source: PubMed

ABSTRACT The human brain has been proposed to represent a genetic mosaic, containing a small but constant number of neurons with an amount of DNA exceeding the diploid level that appear to be generated through various chromosome segregation defects initially. While a portion of these cells apparently die during development, neurons with abnormal chromosomal copy number have been identified in the mature brain. This genomic alteration might to lead to chromosomal instability affecting neuronal viability and could thus contribute to age-related mental disorders. Changes in the frequency of neurons with such structural genomic variation in the adult and aging brain, however, are unknown. Here, we quantified the frequency of neurons with a more than diploid DNA content in the cerebral cortex of normal human brain and analyzed its changes between the fourth and ninth decades of life. We applied a protocol of slide-based cytometry optimized for DNA quantification of single identified neurons, which allowed to analyze the DNA content of about 500 000 neurons for each brain. On average, 11.5% of cortical neurons showed DNA content above the diploid level. The frequency of neurons with this genomic alteration was highest at younger age and declined with age. Our results indicate that the genomic variation associated with DNA content exceeding the diploid level might compromise viability of these neurons in the aging brain and might thus contribute to susceptibilities for age-related CNS disorders. Alternatively, a potential selection bias of "healthy aging brains" needs to be considered, assuming that DNA content variation above a certain threshold associates with Alzheimer's disease.

1 Bookmark
 · 
114 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ageing is influenced by the intrinsic disposition delineating what is maximally possible and extrinsic factors determining how that frame is individually exploited. Intrinsic and extrinsic ageing processes act on the dermis, a post-mitotic skin compartment mainly consisting of extracellular matrix and fibroblasts. Dermal fibroblasts are long-lived cells constantly undergoing damage accumulation and (mal-) adaptation, thus constituting a powerful indicator system for human ageing. Here, we use the systematic of ubiquitous hallmarks of ageing (Lopez-Otin et al., 2013, Cell 153) to categorise the available knowledge regarding dermal fibroblast ageing. We discriminate processes inducible in culture from phenomena apparent in skin biopsies or primary cells from old donors, coming to the following conclusions: (i) Fibroblasts aged in culture exhibit most of the established, ubiquitous hallmarks of ageing. (ii) Not all of these hallmarks have been detected or investigated in fibroblasts aged in situ (in the skin). (iii) Dermal fibroblasts aged in vitro and in vivo exhibit additional features currently not considered ubiquitous hallmarks of ageing. (iv) The ageing process of dermal fibroblasts in their physiological tissue environment has only been partially elucidated, although these cells have been a preferred model of cell ageing in vitro for decades.
    Mechanisms of ageing and development 03/2014; DOI:10.1016/j.mad.2014.03.004 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is assumed that DNA sequences are conserved in the diverse cell types present in a multicellular organism like the human being. Thus, in order to compare the sequences in the genome of DNA from different individuals, nucleic acid is commonly isolated from a single tissue. In this regard, blood cells are widely used for this purpose because of their availability. Thus blood DNA has been used to study genetic familiar diseases that affect other tissues and organs, such as the liver, heart, and brain. While this approach is valid for the identification of familial diseases in which mutations are present in parental germinal cells and, therefore, in all the cells of a given organism, it is not suitable to identify sporadic diseases in which mutations might occur in specific somatic cells. This review addresses somatic DNA variations in different tissues or cells (mainly in the brain) of single individuals and discusses whether the dogma of DNA invariance between cell types is indeed correct. We will also discuss how single nucleotide somatic variations arise, focusing on the presence of specific DNA mutations in the brain.
  • Cytometry Part A 08/2014; 85(8):651-2. DOI:10.1002/cyto.a.22506 · 3.71 Impact Factor

Full-text (2 Sources)

Download
5 Downloads
Available from
Sep 30, 2014

Markus Morawski