Article

Synthesis and characterisation of CuO nanorods via a hydrothermal method

Micro & Nano Letters (Impact Factor: 0.8). 10/2011; 6(9):774 - 776. DOI: 10.1049/mnl.2011.0341
Source: IEEE Xplore

ABSTRACT CuO nanorods were synthesised on a large scale via a simple hydrothermal method. CuCl2·2H2O and cetyltrimethylammonium bromide (CTAB) were used as the copper source and surfactant, respectively. The microstructure and morphology of the CuO nanorods were examined by X-ray diffraction, Raman spectrum, field-emission scanning electron microscopy, transmission electron microscopy (TEM) and UV-vis spectrum. The CuO nanorods were monoclinic, and their diameter and length ranged from 20 to 30 nm and 150 to 200 nm, respectively. High resolution TEM and selected area electron diffraction results indicated that the CuO nanorods grow along the [010] direction. A possible growth mechanism for the formation of CuO nanorods was proposed. The concentration of surfactant CTAB in the solution was found to be a critical factor on the CuO morphology during the hydrothermal stage. The bandgap of the CuO nanorods was calculated to be 2.01 eV from the UV-vis spectrum.

0 Bookmarks
 · 
198 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanoscale metal oxide materials have been attracting much attention because of their unique size- and dimensionality-dependent physical and chemical properties as well as promising applications as key components in micro/nanoscale devices. Cupric oxide (CuO) nanostructures are of particular interest because of their interesting properties and promising applications in batteries, supercapacitors, solar cells, gas sensors, bio sensors, nanofluid, catalysis, photodetectors, energetic materials, field emissions, superhydrophobic surfaces, and removal of arsenic and organic pollutants from waste water. This article presents a comprehensive review of recent synthetic methods along with associated synthesis mechanisms, characterization, fundamental properties, and promising applications of CuO nanostructures. The review begins with a description of the most common synthetic strategies, characterization, and associated synthesis mechanisms of CuO nanostructures. Then, it introduces the fundamental properties of CuO nanostructures, and the potential of these nanostructures as building blocks for future micro/nanoscale devices is discussed. Recent developments in the applications of various CuO nanostructures are also reviewed. Finally, several perspectives in terms of future research on CuO nanostructures are highlighted.
    Progress in Materials Science 03/2014; 60:208–337. DOI:10.1016/j.pmatsci.2013.09.003 · 23.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present work a wet chemical method has been employed for the synthesis of self-assembled 1-D polycrystalline nanochains of CuO. The Zetasizer, AFM, FESEM and TEM results show that in the grown sample the CuO nanoparticles become organized to form chain like structures. These chains have an average size of NPs and chain length of similar to 25 +/- 7 nm and 495 +/- 135 nm, respectively. The CuO nanochains have a band gap of 2.7 eV and upon 340 nm irradiation exhibit a characteristic fluorescence spectrum peaking at 410 nm along with two shoulders at higher (390 nm, 3.2 eV) and lower energies (440 nm, 2.8 eV). The fluorescence lifetime is observed to increase with the decreasing energy of emission. These nanostructures exhibit three red shifted Raman bands at 286, 335 and 619 cm(-1), compared to the bulk CuO. The magnetic measurements show a weak ferromagnetic interaction at room temperature which is enhanced further at lower temperatures associated with an exchange bias effect (H-eb = 290 Oe) and spin glass like behavior (at 56 K). At room temperature CuO nanochains demonstrate a weak ferroelectric behavior along with a high dielectric constant of the order of >10(3) at low frequency. The optical, Raman and magnetic measurements suggest a relatively stronger quantum confinement and the presence of defects in the as synthesized CuO nanochains. Morphological changes leading to the creation of defects appear to be responsible for the observed changes in their optical, magnetic and ferroelectric properties. The correlation between the morphology and the observed optical, magnetic and ferroelectric properties of the samples has been analyzed.
    CrystEngComm 01/2014; 16(14):3005-3014. DOI:10.1039/c3ce42552e · 3.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fiber-shaped cupric oxide (CuO) nanoparticles and flower-shaped ZnO nanoparticles were facilely synthesized by plasma-induced technique directly from copper and zinc electrode pair in water, respectively. The phase composition, morphologies and optical property of nanoparticles have been investigated by energy dispersive X-ray analysis, X-ray powder diffraction, transmission electron microscopy and UV–vis. The in situ analysis by an optical emission spectroscopy clarified the formation mechanism. Plasma was generated from the discharge between a metal electrode pair in water by a pulse direct current power. CuO and ZnO nanoparticles were synthesized via almost the same formation mechanism, which were prepared via the rapid energetic radicals’ bombardment to electrodes’ surface, atom vapour diffusion, plasma expansion, solution medium condensation, and in situ oxygen reaction and further growth. This novel plasma-induced technique will become a potential application in nanomaterials synthesis.
    Plasma Chemistry and Plasma Processing 09/2014; 34(5). DOI:10.1007/s11090-014-9546-0 · 1.60 Impact Factor