An Experimental and Simulation Study of Touchdown Dynamics

IEEE Transactions on Magnetics (Impact Factor: 1.42). 11/2011; DOI: 10.1109/TMAG.2011.2158601
Source: IEEE Xplore

ABSTRACT Dynamic flying height technology has been widely employed for reducing the mechanical spacing between the magnetic heads and the disk. As the recording density of hard disk drives approach 1 Tbit/in2, the spacing is decreased to sub 1 nm. At such low spacing, the touchdown (TD) dynamics becomes extremely critical. First, it affects the accuracy of the spacing setting, or TD detection. Second, it affects the hard disk drive reliability, such as writing modulation, wear, instability, etc. It decides how low the slider can fly stably and reliably. In this paper, we tried to have a better understanding of the TD dynamics with several designs of experiments first. We found that there were two stages in the whole TD process. In the first TD stage, a low frequency (30-150 kHz) vibration appeared. It was a suspension mode that was excited by the lubricant on the disk. In the second stage, a high frequency vibration (200-400 kHz) appeared. It was the second pitch mode of the slider air bearing excited by the contact between the slider and the disk. Based on these experimental observations, we propose modeling and simulation procedures with a combination of a full suspension model and a simplified air bearing model. Simulation can predict these two TD frequencies very well. Therefore, it could be applied to design head/disk interface to help achieve preferred TD behaviors.

  • [Show abstract] [Hide abstract]
    ABSTRACT: With the wide application of thermal flying-height control (TFC) technology in the hard disk drive industry, the head-disk clearance can be controlled to as low as ~1 nm. At this ultra-low clearance, the air bearing slider is subject to relatively large interfacial forces, and it experiences more complicated dynamics, compared with the flying case. In this study we conduct a numerical analysis to investigate the dynamics of TFC sliders during touchdown. The general trend of the slider’s motion predicted by the numerical simulation qualitatively agrees with experimental findings. The touchdown process begins with a slight intermittent contact between the slider’s trailing edge and the disk, followed by a partial slider-disk contact at the trailing edge accompanied by a large pitch motion at the 1st air bearing mode; this pitch motion gets suppressed and the slider comes into stable sliding on the disk as the protrusion is further increased.
    Microsystem Technologies 18(9-10). · 0.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Future magnetic storage density targets (>4 Tb/in. 2) require subnanometer physical clearances that pose a tremendous challenge to the head disk interface (HDI) design. A detailed understanding of slider-lubricant interactions at small clearances and contact is important to not only address magnetic spacing calibration and long term HDI reliability but also to meet additional challenges imposed by future recording architectures such as heat assisted magnetic recording (HAMR). In this work, the behavior of the disk lubricant is investigated through controlled tests using TFC sliders which are actuated to proximity (i.e. backoff) and into contact (i.e. overpush) on one specific half of the disk per rotation by synchronization with the spindle index. Observations for lubricant distribution in contact tests (i.e. overpush) reveal an accumulation of lubricant on the disk near the onset of contact suggesting a migration of lubricant from the slider to the disk as the slider approaches the disk. Experiments also reveal that there is a similar deposition of lubricant even in the absence of contact for backoff tests. Furthermore, light contact tests result in significant lubricant rippling and depletion with associated slider dynamics. The lubricant rippling frequencies correlate well with the slider’s vibration frequencies. Interestingly, strong overpush may lead to stable slider dynamics (for certain air bearing designs) that is also associated with noticeably lower lubricant distribution (compared to the light contact case), and the greatest lubricant changes are observed only at the onset and the end of contact. This paper reveals the complex nature of slider-lubricant interactions under near-contact and contact conditions, and it highlights the need for further studies on the topic to help design a HDI for recording architectures of the future.
    Microsystem Technologies 18(9-10). · 0.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A method is proposed for passive vibration absorption in hard-disk drives during transient events such as the coming into proximity of the rotating disk within the context of thermal fly-height control nanotechnology or external shock. The method uses a nonlinear energy sink at the center of mass of the slider that can absorb energy over a wide range of excitation frequencies. Its feasibility and performance are investigated through a 4-degree-of-freedom dynamic model of the head-disk interface used to predict head-disk clearance and vibrations.
    IEEE Transactions on Magnetics 01/2012; 48(11):4261-4264. · 1.42 Impact Factor