Article

Spherically Invariant Vector Random Fields in Space and Time

IEEE Transactions on Signal Processing (Impact Factor: 2.81). 01/2012; DOI: 10.1109/TSP.2011.2166391
Source: IEEE Xplore

ABSTRACT This paper is concerned with spherically invariant or elliptically contoured vector random fields in space and/or time, which are formulated as scale mixtures of vector Gaussian random fields. While a spherically invariant vector random field may or may not have second-order moments, a spherically invariant second-order vector random field is determined by its mean and covariance matrix functions, just like the Gaussian one. This paper explores basic properties of spherically invariant second-order vector random fields, and proposes an efficient approach to develop covariance matrix functions for such vector random fields.

0 Bookmarks
 · 
58 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In terms of the two-parameter Mittag-Leffler function with specified parameters, this paper introduces the Mittag-Leffler vector random field through its finite-dimensional characteristic functions, which is essentially an elliptically contoured one and reduces to a Gaussian one when the two parameters of the Mittag-Leffler function equal 1. Having second-order moments, a Mittag-Leffler vector random field is characterized by its mean function and its covariance matrix function, just like a Gaussian one. In particular, we construct direct and cross covariances of Mittag-Leffler type for such vector random fields.
    Annals of the Institute of Statistical Mathematics 01/2013; · 0.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents the characterization of the covariance matrix function of a Gaussian or second-order elliptically contoured vector random field on the sphere which is stationary, isotropic, and mean square continuous. This characterization involves an infinite sum of the products of positive definite matrices and Gegenbauer’s polynomials, and may not be available for other non-Gaussian vector random fields on spheres such as a χ 2 or log-Gaussian vector random field. We also offer two simple but efficient constructing approaches, and derive some parametric covariance matrix structures on spheres.
    Mathematical geosciences 44(6). · 1.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper is concerned with vector random fields on spheres with second-order increments, which are intrinsically stationary and mean square continuous and have isotropic variogram matrix functions. A characterization of the continuous and isotropic variogram matrix function on a sphere is derived, in terms of an infinite sum of the products of positive definite matrices and ultraspherical polynomials. It is valid for Gaussian or elliptically contoured vector random fields, but may not be valid for other non-Gaussian vector random fields on spheres such as a χ 2, log-Gaussian, or skew-Gaussian vector random field. Some parametric variogram matrix models are derived on spheres via different constructional approaches. A simulation study is conducted to illustrate the implementation of the proposed model in estimation and cokriging, whose performance is compared with that using the linear model of coregionalization.
    Mathematical geosciences 01/2013; 45(3). · 1.44 Impact Factor