Conference Paper

Robust sparse coding for face recognition

Hong Kong Polytech. Univ., Hong Kong, China
DOI: 10.1109/CVPR.2011.5995393 Conference: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on
Source: IEEE Xplore

ABSTRACT Recently the sparse representation (or coding) based classification (SRC) has been successfully used in face recognition. In SRC, the testing image is represented as a sparse linear combination of the training samples, and the representation fidelity is measured by the l2-norm or l1-norm of coding residual. Such a sparse coding model actually assumes that the coding residual follows Gaussian or Laplacian distribution, which may not be accurate enough to describe the coding errors in practice. In this paper, we propose a new scheme, namely the robust sparse coding (RSC), by modeling the sparse coding as a sparsity-constrained robust regression problem. The RSC seeks for the MLE (maximum likelihood estimation) solution of the sparse coding problem, and it is much more robust to outliers (e.g., occlusions, corruptions, etc.) than SRC. An efficient iteratively reweighted sparse coding algorithm is proposed to solve the RSC model. Extensive experiments on representative face databases demonstrate that the RSC scheme is much more effective than state-of-the-art methods in dealing with face occlusion, corruption, lighting and expression changes, etc.

0 Bookmarks
 · 
396 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a multi-layer group sparse coding framework for concurrent single-label image classification and annotation. By leveraging the dependency between image class label and tags, we introduce a multi-layer group sparse structure of the reconstruction coefficients. Such structure fully encodes the mutual dependency between the class label, which describes image content as a whole, and tags, which describe the components of the image content. Therefore we propose a multi-layer group based tag propagation method, which combines the class label and subgroups of instances with similar tag distribution to annotate test images. To make our model more suitable for nonlinear separable features, we also extend our multi-layer group sparse coding in the Reproducing Kernel Hilbert Space (RKHS), which further improves performances of image classification and annotation. Moreover, we also integrate our multi-layer group sparse coding with $k{rm NN}$ strategy, which greatly improves the computational efficiency. Experimental results on the LabelMe, UIUC-Sports and NUS-WIDE-Object databases show that our method outperforms the baseline methods, and achieves excellent performances in both image classification and annotation tasks.
    IEEE Transactions on Multimedia 01/2014; 16(3):762-771. · 1.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Robust sparse representation has shown significant potential in solving challenging problems in computer vision such as biometrics and visual surveillance. Although several robust sparse models have been proposed and promising results have been obtained, they are either for error correction or for error detection, and learning a general framework that systematically unifies these two aspects and explores their relation is still an open problem. In this paper, we develop a half-quadratic (HQ) framework to solve the robust sparse representation problem. By defining different kinds of half-quadratic functions, the proposed HQ framework is applicable to performing both error correction and error detection. More specifically, by using the additive form of HQ, we propose an $(\ell_1)$-regularized error correction method by iteratively recovering corrupted data from errors incurred by noises and outliers; by using the multiplicative form of HQ, we propose an $(\ell_1)$-regularized error detection method by learning from uncorrupted data iteratively. We also show that the $(\ell_1)$-regularization solved by soft-thresholding function has a dual relationship to Huber M-estimator, which theoretically guarantees the performance of robust sparse representation in terms of M-estimation. Experiments on robust face recognition under severe occlusion and corruption validate our framework and findings.
    IEEE Transactions on Software Engineering 02/2014; 36(2):261-75. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, sparse coding has been successfully applied in visual tracking. The goal of this paper is to review the state-of-the-art tracking methods based on sparse coding. We first analyze the benefits of using sparse coding in visual tracking and then categorize these methods into appearance modeling based on sparse coding (AMSC) and target searching based on sparse representation (TSSR) as well as their combination. For each categorization, we introduce the basic framework and subsequent improvements with emphasis on their advantages and disadvantages. Finally, we conduct extensive experiments to compare the representative methods on a total of 20 test sequences. The experimental results indicate that: (1) AMSC methods significantly outperform TSSR methods. (2) For AMSC methods, both discriminative dictionary and spatial order reserved pooling operators are important for achieving high tracking accuracy. (3) For TSSR methods, the widely used identity pixel basis will degrade the performance when the target or candidate images are not aligned well or severe occlusion occurs. (4) For TSSR methods, ℓ1 norm minimization is not necessary. In contrast, ℓ2 norm minimization can obtain comparable performance but with lower computational cost. The open questions and future research topics are also discussed.
    Pattern Recognition 07/2013; 46(7):1772-1788. · 2.63 Impact Factor

Full-text (2 Sources)

View
4 Downloads
Available from