Conference Proceeding

Robust sparse coding for face recognition

Hong Kong Polytech. Univ., Hong Kong, China
Proceedings / CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition 07/2011; DOI:10.1109/CVPR.2011.5995393 In proceeding of: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on
Source: IEEE Xplore

ABSTRACT Recently the sparse representation (or coding) based classification (SRC) has been successfully used in face recognition. In SRC, the testing image is represented as a sparse linear combination of the training samples, and the representation fidelity is measured by the l2-norm or l1-norm of coding residual. Such a sparse coding model actually assumes that the coding residual follows Gaussian or Laplacian distribution, which may not be accurate enough to describe the coding errors in practice. In this paper, we propose a new scheme, namely the robust sparse coding (RSC), by modeling the sparse coding as a sparsity-constrained robust regression problem. The RSC seeks for the MLE (maximum likelihood estimation) solution of the sparse coding problem, and it is much more robust to outliers (e.g., occlusions, corruptions, etc.) than SRC. An efficient iteratively reweighted sparse coding algorithm is proposed to solve the RSC model. Extensive experiments on representative face databases demonstrate that the RSC scheme is much more effective than state-of-the-art methods in dealing with face occlusion, corruption, lighting and expression changes, etc.

0 0
 · 
0 Bookmarks
 · 
294 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Recently, sparse coding has been successfully applied in visual tracking. The goal of this paper is to review the state-of-the-art tracking methods based on sparse coding. We first analyze the benefits of using sparse coding in visual tracking and then categorize these methods into appearance modeling based on sparse coding (AMSC) and target searching based on sparse representation (TSSR) as well as their combination. For each categorization, we introduce the basic framework and subsequent improvements with emphasis on their advantages and disadvantages. Finally, we conduct extensive experiments to compare the representative methods on a total of 20 test sequences. The experimental results indicate that: (1) AMSC methods significantly outperform TSSR methods. (2) For AMSC methods, both discriminative dictionary and spatial order reserved pooling operators are important for achieving high tracking accuracy. (3) For TSSR methods, the widely used identity pixel basis will degrade the performance when the target or candidate images are not aligned well or severe occlusion occurs. (4) For TSSR methods, ℓ1 norm minimization is not necessary. In contrast, ℓ2 norm minimization can obtain comparable performance but with lower computational cost. The open questions and future research topics are also discussed.
    Pattern Recognition 07/2013; 46(7):1772-1788. · 2.63 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the proposed method, dictionaries and classifiers are learned simultaneously from a set of brain atlases, which can then be used for the reconstruction and segmentation of an unseen target image. The proposed segmentation strategy is based on image reconstruction, which is in contrast to most existing atlas-based labeling approaches that rely on comparing image similarities between atlases and target images. In addition, we propose a Fixed Discriminative Dictionary Learning for Segmentation (F-DDLS) strategy, which can learn dictionaries offline and perform segmentations online, enabling a significant speed-up in the segmentation stage. The proposed method has been evaluated for the hippocampus segmentation of 80 healthy ICBM subjects and 202 ADNI images. The robustness of the proposed method, especially of our F-DDLS strategy, was validated by training and testing on different subject groups in the ADNI database. The influence of different parameters were studied and the performance of the proposed method was also compared with that of the nonlocal patch-based approach. The proposed method achieved a median Dice coefficient of 0.879 on 202 ADNI images and 0.890 on 80 ICBM subjects, which is competitive compared with state-of-the-art methods.
    NeuroImage 03/2013; · 6.25 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Minimum squared error based classification (MSEC) method establishes a unique classification model for all the test samples. However, this classification model may be not optimal for each test sample. This paper proposes an improved MSEC (IMSEC) method, which is tailored for each test sample. The proposed method first roughly identifies the possible classes of the test sample, and then establishes a minimum squared error (MSE) model based on the training samples from these possible classes of the test sample. We apply our method to face recognition. The experimental results on several datasets show that IMSEC outperforms MSEC and the other state-of-the-art methods in terms of accuracy.
    PLoS ONE 01/2013; 8(8):e70370. · 3.73 Impact Factor

Full-text (2 Sources)

View
0 Downloads
Available from