Conference Paper

On the non-robustness of inconsistent quaternion-based attitude control systems using memoryless path-lifting schemes

Robert Bosch Res. & Technol. Center, Palo Alto, CA, USA
Conference: American Control Conference (ACC), 2011
Source: IEEE Xplore

ABSTRACT The unit quaternion is a pervasive representation of rigid-body attitude used for the design and analysis of feedback control laws. Quaternion-based feedback control laws that are inconsistent (i.e. do not have a unique value for a given attitude) require an additional mechanism that lifts a continuous attitude trajectory to the unit quaternion space. Lifting mechanisms that are memoryless, for example, selecting the quaternion having positive scalar component, have a limited domain where they remain injective and, when used globally, introduce discontinuities into the closed-loop system. We show that such discontinuities can be exploited by an arbitrarily small measurement disturbance to stabilize attitudes far from the desired attitude and destroy "global" attractivity properties.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper provides nonlinear tracking control systems for a quadrotor unmanned aerial vehicle (UAV) that are robust to bounded uncertainties. A mathematical model of a quadrotor UAV is defined on the special Euclidean group, and nonlinear output-tracking controllers are developed to follow (1) an attitude command, and (2) a position command for the vehicle center of mass. The controlled system has the desirable properties that the tracking errors are uniformly ultimately bounded, and the size of the ultimate bound can be arbitrarily reduced by control system parameters. Numerical examples illustrating complex maneuvers are provided.
    Proceedings of the American Control Conference 09/2011;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The existing attitude controllers (without angular velocity measurements) involve explicitly the orientation (\textit{e.g.,} the unit-quaternion) in the feedback. Unfortunately, there does not exist any sensor that directly measures the orientation of a rigid body, and hence, the attitude must be reconstructed using a set of inertial vector measurements as well as the angular velocity (which is assumed to be unavailable in velocity-free control schemes). To overcome this \textit{circular reasoning}-like problem, we propose a velocity-free attitude stabilization control scheme relying solely on inertial vector measurements. The originality of this control strategy stems from the fact that the reconstruction of the attitude as well as the angular velocity measurements are not required at all. Moreover, as a byproduct of our design approach, the proposed controller does not lead to the unwinding phenomenon encountered in unit-quaternion based attitude controllers.
    IEEE Transactions on Automatic Control 03/2012; · 2.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper provides new results for a robust adaptive tracking control of the attitude dynamics of a rigid body. Both of the attitude dynamics and the proposed control system are globally expressed on the special orthogonal group, to avoid complexities and ambiguities associated with other attitude representations such as Euler angles or quaternions. By designing an adaptive law for the inertia matrix of a rigid body, the proposed control system can asymptotically follow an attitude command without the knowledge of the inertia matrix, and it is extended to guarantee boundedness of tracking errors in the presence of unstructured disturbances. These are illustrated by numerical examples and experiments for the attitude dynamics of a quadrotor UAV.
    Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on; 01/2011


1 Download
Available from