Article

Maximum Margin Bayesian Network Classifiers

Dept. of Electr. Eng., Graz Univ. of Technol., Graz, Austria
IEEE Transactions on Pattern Analysis and Machine Intelligence (Impact Factor: 4.8). 04/2012; DOI: 10.1109/TPAMI.2011.149
Source: IEEE Xplore

ABSTRACT We present a maximum margin parameter learning algorithm for Bayesian network classifiers using a conjugate gradient (CG) method for optimization. In contrast to previous approaches, we maintain the normalization constraints on the parameters of the Bayesian network during optimization, i.e., the probabilistic interpretation of the model is not lost. This enables us to handle missing features in discriminatively optimized Bayesian networks. In experiments, we compare the classification performance of maximum margin parameter learning to conditional likelihood and maximum likelihood learning approaches. Discriminative parameter learning significantly outperforms generative maximum likelihood estimation for naive Bayes and tree augmented naive Bayes structures on all considered data sets. Furthermore, maximizing the margin dominates the conditional likelihood approach in terms of classification performance in most cases. We provide results for a recently proposed maximum margin optimization approach based on convex relaxation [1]. While the classification results are highly similar, our CG-based optimization is computationally up to orders of magnitude faster. Margin-optimized Bayesian network classifiers achieve classification performance comparable to support vector machines (SVMs) using fewer parameters. Moreover, we show that unanticipated missing feature values during classification can be easily processed by discriminatively optimized Bayesian network classifiers, a case where discriminative classifiers usually require mechanisms to complete unknown feature values in the data first.

0 Bookmarks
 · 
208 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The margin criterion for parameter learning in graphical models gained significant impact over the last years. We use the maximum margin score for discriminatively optimizing the structure of Bayesian network classifiers. Furthermore, greedy hill-climbing and simulated annealing search heuristics are applied to determine the classifier structures. In the experiments, we demonstrate the advantages of maximum margin optimized Bayesian network structures in terms of classification performance compared to traditionally used discriminative structure learning methods. Stochastic simulated annealing requires less score evaluations than greedy heuristics. Additionally, we compare generative and discriminative parameter learning on both generatively and discriminatively structured Bayesian network classifiers. Margin-optimized Bayesian network classifiers achieve similar classification performance as support vector machines. Moreover, missing feature values during classification can be handled by discriminatively optimized Bayesian network classifiers, a case where purely discriminative classifiers usually require mechanisms to complete unknown feature values in the data first.
    Pattern Recognition 02/2013; 46(2):464–471. · 2.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bayesian network classifiers (BNCs) are probabilistic classifiers showing good performance in many applications. They consist of a directed acyclic graph and a set of conditional probabilities associated with the nodes of the graph. These conditional probabilities are also referred to as parameters of the BNCs. According to common belief, these classifiers are insensitive to deviations of the conditional probabilities under certain conditions. The first condition is that these probabilities are not too extreme, i.e. not too close to 0 or 1. The second is that the posterior over the classes is significantly different. In this paper, we investigate the effect of precision reduction of the parameters on the classification performance of BNCs. The probabilities are either determined generatively or discriminatively. Discriminative probabilities are typically more extreme. However, our results indicate that BNCs with discriminatively optimized parameters are almost as robust to precision reduction as BNCs with generatively optimized parameters. Furthermore, even large precision reduction does not decrease classification performance significantly. Our results allow the implementation of BNCs with less computational complexity. This supports application in embedded systems using floating-point numbers with small bit-width. Reduced bit-widths further enable to represent BNCs in the integer domain while maintaining the classification performance.
    IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP); 01/2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Analyzing brain networks from neuroimages is becom- ing a promising approach in identifying novel connectivity- based biomarkers for the Alzheimer’s disease (AD). In this regard, brain “effective connectivity” analysis, which stud- ies the causal relationship among brain regions, is highly challenging and of many research opportunities. Most of the existing works in this field use generative methods. De- spite their success in data representation and other impor- tant merits, generative methods are not necessarily discrim- inative, which may cause the ignorance of subtle but criti- cal disease-induced changes. In this paper, we propose a learning-based approach that integrates the benefits of gen- erative and discriminative methods to recover effective con- nectivity. In particular, we employ Fisher kernel to bridge the generative models of sparse Bayesian networks (SBN) and the discriminative classifiers of SVMs, and convert the SBN parameter learning to Fisher kernel learning via min- imizing a generalization error bound of SVMs. Our method is able to simultaneously boost the discriminative power of both the generative SBN models and the SBN-induced SVM classifiers via Fisher kernel. The proposed method is tested on analyzing brain effective connectivity for AD from ADNI data, and demonstrates significant improvements over the state-of-the-art work.
    The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, Oregon; 06/2013

Full-text (2 Sources)

View
128 Downloads
Available from
May 26, 2014